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Abstract 
 

 

          Cartilage morphology is both an indicator of tissue health, and an important 

biomechanical determinant of internal joint mechanics. However, direct measurement of 

cartilage morphology and joint loading is not feasible. Thus, it is necessary to develop 

computational imaging and modeling tools to investigate the relationship between 

cartilage morphology and knee mechanics during human movement. Such tools are 

relevant clinically for tracking changes in morphology that can arise secondary to injury, 

surgical treatment and rehabilitation. Further, computational biomechanical modeling 

tools are beneficial in research for predicting the influence that interventions can have 

on joint loading patterns. The overall goal of this work was to develop, validate and use 

new computational approaches to accurately characterize in vivo cartilage morphology 

from MRI images and simulate tibiofemoral cartilage loading patterns during human 

walking. This goal was achieved by completing the following four objectives. 

 

Objective 1. Develop an Accurate and Repeatable Semi-Automated Segmentation 

Algorithm for Reconstructing Articular Cartilage Morphology from Magnetic 

Resonance Images 

 

Cartilage morphology is a vital indicator of tissue health. For example, in osteoarthritis, 

cartilage tissue is observed to undergo thickening in the early stages of the disease 

followed by thinning in the later stages. Advances in magnetic resonance (MR) imaging 

sequences can be used to obtain high resolution images of cartilage morphology that 
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are useful for assessing subtle changes in cartilage thickness. However, segmenting 

out the entire cartilage volume from stacks of images remains a time-consuming task 

due to the inherent challenge in automatically identifying tissue boundaries. Further, the 

anatomical accuracy and repeatability of 3D cartilage models based on manual 

segmentation have been questioned. We introduce a semi-automated cartilage 

segmentation algorithm for creating 3D cartilage geometry models from MR images 

within a few seconds. The algorithm first uses region growing to segment out the bone 

tissue, edge detection to delineate tissue boundaries and then a novel radial projection 

scheme to identify the inner and outer surface of the cartilage. This sequence is 

repeated across a stack of MR image slices, resulting in a 3D reconstruction of the 

entire cartilage volume. We validated the segmentation algorithm by showing it 

produced unbiased porcine knee cartilage thickness estimates that were within 0.4mm 

of direct cartilage thickness measures obtained via a laser scanner. The segmentation 

algorithm was also successfully used to segment tibia and femoral articular cartilage 

surfaces from MR images collected on human subjects. Good computational 

performance was achieved with the automated algorithm requiring a couple orders of 

magnitude less time than a manual segmentation approach. 

 

Objective 2. Introduce a Computationally Efficient Collision Detection Algorithm 

to enable the Calculation of Complex Cartilage Contact Pressure Patterns within 

Biomechanical Simulations of Movement 
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The location and magnitude of knee joint articular contact pressure are important factors 

that can affect the long-term health of cartilage tissue. The objective of the study was to 

develop a computationally efficient discrete element analysis (DEA) algorithm that 

would allow for surface pressure to be computed based on the depth of penetration 

between two articulating elastic surfaces. The primary computational challenge in using 

DEA with complex geometries involves determining the regions of surface overlap, a 

process that involves finding the face on a target surface that is intersected by a ray 

cast from a face on the parent surface. We accelerated the collision detection process 

by using a hierarchical bounding volume approach, in which the target surface was 

successively subdivided into regions that fit within tight fitting bounding boxes. Ray-box 

intersection tests then allowed us to quickly traverse the surface and identify the leaf 

node containing the triangle intersected by a ray. The parallelized algorithm was 

subsequently implemented on a graphics processor unit (GPU), providing nearly 10 fold 

increase in computation speed when high resolution cartilage surface meshes were 

used. The collision detection algorithm was shown to be sufficiently fast to enable 

simulations of tibiofemoral contact loading patterns within a multibody dynamic 

simulation of walking.  

 

Objective 3. Investigate the Accuracy of Simulated Tibiofemoral Contact Loads 

Obtained via the Co-Simulation of Neuromuscular Dynamics and Knee Mechanics 

 

This study introduced a framework for co-simulating neuromuscular dynamics and knee 

joint mechanics during gait. A knee model was developed that included 17 ligament 
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bundles and a representation of the distributed contact between a femoral component 

and tibial insert surface. The knee was incorporated into a forward dynamics 

musculoskeletal model of the lower extremity. A computed muscle control algorithm was 

then used to modulate the muscle excitations to drive the model to closely track 

measured hip, knee, and ankle angle trajectories of a subject walking overground with 

an instrumented knee replacement. The resulting simulations predicted the muscle 

forces, ligament forces, secondary knee kinematics, and tibiofemoral contact loads. 

Model-predicted tibiofemoral contact forces were of comparable magnitudes to 

experimental measurements, with peak medial (1.95 body weight (BW)) and total (2.76 

BW) contact forces within 4–17% of measured values. Average root-mean-square 

errors over a gait cycle were 0.26, 0.42, and 0.51 BW for the medial, lateral, and total 

contact forces, respectively.  

 

 Objective 4. Investigate the Influence of Cartilage Thickness on Simulated 

Tibiofemoral Contact Pressure Patterns during Normal Human Walking  

 

Cartilage has a spatially varying micro- and macro-structural arrangement that is well 

adapted to the loading seen in vivo. It is believed that injury- and surgery-induced 

changes in knee mechanics may disrupt this loading and subsequently lead to cartilage 

thinning. This degenerative process may be cumulative, with changes in cartilage 

morphology affecting tissue loads in a way that exacerbates the problem. This pilot 

study was undertaken to investigate the influence that cartilage thickness can have on 

cartilage pressure patterns in human walking. Gait simulations were performed with 
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combined tibiofemoral cartilage thickness ranging from 2 to 10 mm.  Peak tibia plateau 

contact pressures increased nonlinearly with cartilage thinning, with a 51% increase in 

pressure predicted in the thin cartilage condition (2mm of total contact cartilage 

thickness) compared to the nominal cartilage model (6mm of total contact cartilage 

thickness). As a result, net contact areas decreased substantially with cartilage thinning, 

by 43% in the thin cartilage condition relative to the nominal condition. 

 The computational tools developed in this study will enable future investigations 

of cartilage loading on heterogenous cartilage thickness maps derived from images on 

individual subjects. Such studies are important for understanding and treating 

biomechanical factors that can contribute to cartilage tissue degeneration. 
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 Chapter 1: Introduction 
 

  

 The knee joint is one of the largest and most complex joints in the human body 

(Kulowski 1932) (Figure 1) (Figure 2). The knee joint joins the femur with the tibia and the 

patella and consists of two articulations: the tibiofemoral joint and the patellofemoral joint 

(Elaine N. Marieb 2008). Soft tissues connect the knee bones to the  muscles around the 

knee that move the joint and provide stability to the knee (Elaine N. Marieb 2008). The 

anterior cruciate ligament (ACL) restrains excessive forward movement of the tibia in 

relation to the femur and also it limits excessive tibial rotation and acts as a secondary 

restraint to both valgus and varus stresses (Liu-Ambrose 2003) (Figure 3) (Figure 4). The 

posterior cruciate ligament (PCL) prevents the posterior dislocation of the tibia in relation 

to the femur (Kannus, Bergfeld et al. 1991) (Figure 4) (Figure5). The medial and lateral 

collateral ligaments (the fibular collateral ligament and the tibial collateral ligament) 

prevent the femur from sliding from side to side (Gardiner, Weiss et al. 2001) (Figure 5) 
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Figure 1. Right knee-joint. Anterior view. (Gray 1918) 

 

Figure 2. Right knee-joint. Posterior view. (Gray 1918) 
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Figure 3. Right knee-joint, from the front, showing the Anterior Cruciate 

Ligament . (Gray 1918) 

 

Figure 4. Head of right tibia seen from above, showing the Anterior Cruciate 

Ligament and the Posterior Cruciate Ligament . (Gray 1918) 

 



4 
 

 

Figure 5. Left knee-joint from behind, showing the Posterior Cruciate Ligament, 

the Tibial Collateral Ligament and the Fibular Collateral Ligament . (Gray 1918) 

 Acute anterior cruciate ligament (ACL) ruptures are most often sustained by young, 

physically active individuals. It is estimated that there will be more than 100,000 ACL tears 

in the United States each year (Frank and Jackson 1997). ACL reconstruction surgery 

often results in reliable ligamentous stability permitting patients to recover to a normal 

level of joint function in the short term, up to 5 years (Otto 1998; Spindler, Warren et al. 

2005), and little problem is reported in the intermediate term, ranging 5~9 years (Bach, 

Tradonsky et al. 1998). However, many cases of abnormal articular cartilage morphology 

have been observed over longer time frames, with 48% of cases exhibiting evidence of 

knee osteoarthritis (OA) within 5–20 years after the initial ACL injury (Lohmander, 

Englund et al. 2007; Louboutin, Debarge et al. 2009). Altered knee biomechanics in the 

post-operative knee can be expected to yield abnormal cartilage loading patterns across 

the knee joint with long-term changes in dynamic loading, which may contribute to the 

prevalence of early OA in this population (Lohmander, Englund et al. 2007).  
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 From a clinical application perspective, there are presently no feasible methods for 

assessing how ACL reconstruction surgery will change in vivo biomechanics of the knee 

during the gait cycle, despite the significance to clinicians and patients. Since in vivo direct 

measurement of the human knee is not clinically feasible, gait simulation is considered a 

useful measuring tool to indirectly assess dynamic loads on the joint (Shakoor and Moisio 

2004). Analyzing knee biomechanics during functional activity can offer fundamental 

understanding of daily repetitive loads applied to the knee joint and it can provide insight 

into the pathogenesis of knee OA. 

 There has been substantial speculation about the relationship between in vivo 

tissue mechanics, specific gait alterations after ACL construction surgery and the 

development of OA at the knee joint (Andriacchi, Briant et al. 2006). Computational 

models provide an appropriate framework for studying such links, by providing a cause-

effect relationship between joint morphology, muscle loading and cartilage pressure. 

There are two major challenges to constructing subject-specific computational models 

that contain anatomical details necessary to simulate cartilage pressure. First, it is 

computationally expensive, as the model contains enormous amounts of information from 

the fine meshes of contact surfaces of the knee joint developed from the high resolution 

of MR images and variations of soft tissue conditions. One approach to this challenge is 

parallel computation, which is an emerging computational technique in which many 

calculations are launched concurrently, working on the principle that the computation of 

enormous amounts of data can often be distributed into multi-cores, which are then solved 

simultaneously (Almasi and Gottlieb 1989). Second, to build a more realistic computation 

model, we will construct the 3D model from subject specific three-dimensional cartilage 
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volumes created from MR images (Kaiser, Bradford et al. 2012). Generally, 3D geometry 

is manually segmented from MR images, which is time-consuming and may lead to 

inaccuracies from the manual work. To build an accurate and efficient computational 

model, a semi-automated segmentation algorithm has been developed. Using these 

computational frameworks, the investigation of the interrelationship of cartilage 

morphology and knee mechanics became feasible. 
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Chapter 2: Background 
 

 

 2-1. Knee Cartilage and Osteoarthritis  

 The specific causes of early OA in patients with ACL reconstruction remain 

unknown in spite of the great number of empirical investigations over the past several 

decades. The prevailing theory is that early OA may develop due to a change in cartilage 

loading resulting from abnormal kinematics after ACL reconstruction surgery. Generally, 

knee cartilage has been known to be mainly self-modified to the continual loading that 

occurs during the gait cycle. The region of cartilage subjected to high compressional 

stress is relatively thicker than normal cartilage tissue (Kiviranta, Jurvelin et al. 1987) and 

it demonstrates more random collagen fiber orientations (Figure 6) (Bullough, Yawitz et 

al. 1985; Clark 1991; Appleyard, Burkhardt et al. 2003; Chaudhari, Briant et al. 2008), 

while the region under tensional stress is thinner, with tangentially oriented collagen fibers 

at the surface (Figure 6) (Bullough, Yawitz et al. 1985; Eggli, Hunziker et al. 1988; Little 

and Ghosh 1997; Quinn, Hunziker et al. 2005; Chaudhari, Briant et al. 2008). These 

suggest that cartilage reacts and adapts to the loading environments. 
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Figure 6. (Upper Left) Normal cartilage under high compressional stress, (Upper 

Right) Normal cartilage under low compressional stress or tensional stress, (Lower 

Left) Abnormal tensional stress on cartilage, (Lower Right) Abnormal compression 

stress on cartilage (Chaudhari, Briant et al. 2008) 

 

 There are important differences in the tibiofemoral kinematics of ACL damaged 

knees during the gait cycle compared to the uninjured healthy knees (Georgoulis, 

Papadonikolakis et al. 2003; Andriacchi and Dyrby 2005). Researchers have compared 

the contact points on the surfaces of the tibial plateau of ACL damaged knees to healthy 
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knees. The ACL reconstruction surgery may result in a shift in which areas of the cartilage 

are in contact (Figure 7) (Li, Moses et al. 2006). 

 

 

 

Figure 7. Difference in contact point between healthy knee and ACL-deficient 

knee (Li, Moses et al. 2006) 

 

This shift likely causes increased compressional loading in areas not conditioned to 

frequent load bearing, as well as reduced loading in areas conditioned to frequent load 

bearing or regions that were previously subjected to compression become subjected to 

tension (Figure 6) (Chaudhari, Briant et al. 2008). Cartilage tissue may fail to adapt to the 

new loading pattern and this could lead to the initiation of OA. 

 Since the ACL provides the main anterior and rotational stability to the knee joint 

(Markolf, Graff-Radford et al. 1978; Shoemaker and Markolf 1982; Kanamori, Zeminski 

et al. 2002), there are ongoing studies about the contribution of ACL to knee kinematics 

in gait. The evidence of abnormal internal-external rotation of the tibia with respect to the 
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femur in ACL-deficient and reconstructed knees has been demonstrated in the literature. 

For example, ACL-deficient knees were more internally rotated (Georgoulis, 

Papadonikolakis et al. 2003) while reconstructed knees were more externally rotated 

(Tashman, Collon et al. 2004).  ACL reconstruction has not been capable of correcting 

this abnormality in walking, which is more demanding during running (Stergiou, Ristanis 

et al. 2007). Also, an internal rotational offset of 5° in the ACL-deficient knee caused a 

higher rate of cartilage loss (44% increase in loss) than the normal knee with ACL and 

zero rotation in the loading on the knee. This shows the necessity of correcting for 

rotational motion during ACL reconstruction surgery (Andriacchi, Briant et al. 2006). 

 

 2-2. Recent trends in ACL reconstruction surgery  

 

 ACL reconstruction is surgery aimed at replacing the anterior cruciate ligament 

(ACL), which is located in the center of the knee joint, with a new graft. The ACL keeps 

the tibia in a fixed position and provides the main anterior and rotational stability of the 

knee joint (Markolf, Graff-Radford et al. 1978; Shoemaker and Markolf 1982; Kanamori, 

Zeminski et al. 2002). A rupture of this soft tissue can cause the limb to fail its function 

during ambulation. The tissue replacement is typically either an allograft from a donor or 

an autograft from the patient’s own body. The two most common regions to harvest the 

soft tissue from are the patella tendon or the hamstring tendon. The surgical process is 

typically completed by knee arthroscopy. With arthroscopy, a small medical camera is 

inserted into the knee joint through a tiny surgical cut. Arthroscopy is a minimally invasive 

surgical procedure to check the ligaments and other tissues of the knee during surgery. 
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Then, the surgeon will make other small cuts around the knee joint and insert the other 

medical instruments. The surgeon will fix any other injury found, and then will restore the 

ACL by the following procedures: 

- The torn soft tissue will be detached with a medical shaver or similar medical 

instruments (Fu, Bennett et al. 2000). 

- If an autograft is chosen to build a new ligament, a larger cut needs to be made. 

Then, soft tissue from either the patella tendon or the hamstring tendon will be 

removed through the larger cut (Fu, Bennett et al. 2000). 

- The surgeon will make tunnels in the femur and tibia to bring the graft through 

(Howell and Barad 1995; Fu, Bennett et al. 1999; Fu, Bennett et al. 2000) (Figure 

8). 

 

 

 

Figure 8. Tunnels in femur and tibia (Fu, Bennett et al. 1999) 

This new ligament will be placed in the center of the old knee tissue. The location of the 

new graft is the most significant surgical factor during reconstruction since it has a direct 
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influence on the mechanics of the limb during the gait (Beynnon, Johnson et al. 2005). 

Specifically, the angle of the tunnel decides the position of the inserted graft. This tunnel 

is usually located using a clock-face reference of orientation (Loh, Fukuda et al. 2003) 

(Figure 9). The graft tunnel is normally drilled between the 10 and 11 o’clock direction in 

the right limb, from the tibia to the femur. 

 

 Figure 9. A.Clock-face reference of orientation of tunnel, B. Photograph of the 

separated ACL bundles, AM and PL (Loh, Fukuda et al. 2003) 

 

- The surgeon will fasten the graft to the femur and tibia with titanium screws or other 

fixation device to hold it in a static location. As it recovers, the tunnel structures in 

the femur and tibia will fill in with osteons. Finally, the tunnel could secure the 

reconstructed ACL tissue (Fu, Bennett et al. 1999) (Figure 10). 
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Figure 10. A. a titanium button-polyester tape construction for soft tissue fixation. 

B. a schematic diagram illustrating longitudinal graft tunnel motion, or the 

bungee effect (Fu, Bennett et al. 1999) 

 

 2-3. Generating dynamic gait simulations 

 Dynamic gait simulation using a musculoskeletal model is a useful methodology to 

investigate how muscles, bones and articular joints interact to produce functional 

movement. Especially, it is powerful when the investigator needs to isolate specific 

parameters such as the ACL tunnel angles or the ligament’s stiffness and observe the 

consequences. It provides capabilities of investigation when experimental methods are 

limited (i.e. incapability of in vivo measurements) (Thelen, Anderson et al. 2003). 

 

 2-4. Outline of Dissertation 

The following chapters contain studies that address some of the computational 

challenges in generating models of subject-specific cartilage morphology (Chapter 3), 
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computing articular contact pressure between articular surface models (Chapter 4) and 

simulating tibiofemoral contact loads within the context of gait (Chapter 5). Finally, we 

demonstrate the use of these computational tools to investigate the relationship between 

cartilage thickness and cartilage pressure patterns in human walking (Chapter 6). 
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Chapter 3: Semi-Automated Segmentation Algorithm for 
Reconstructing Articular Cartilage Morphology from MR 
Images 

 

 3-1. Introduction 

 Cartilage composition and morphology are important indicators of the development 

and progression of osteoarthritis (OA) (Andriacchi, Mundermann et al. 2004; Andriacchi, 

Briant et al. 2006; Tashman, Kopf et al. 2008; Lin, Walter et al. 2010). Currently, plane 

film radiographs are often used in the diagnosis of late stage knee osteoarthritis. 

However, standard x-ray technology can only identify cartilage thinning in the late stages 

of the disease. Magnetic resonance (MR) images provide a higher resolution alternative 

that is better able to assess early changes in the 3D geometry of knee cartilage(Eckstein, 

Cicuttini et al. 2006). In addition, newer quantitative MR sequences (T1-rho mapping, T2-

mapping) can be used as biomarkers of cartilage composition. For example, abnormal 

values of T1-rho and T2 have been observed in patients who develop OA one year after 

knee ligament injury (Li, Kuo et al. 2011). These early signs of OA occur much earlier 

than changes in cartilage thickness, which generally are not observable until later stages 

of the disease. 

 In practice, it remains challenging to segment the 3D cartilage tissue regions in 

MR images. Segmentation is important for measuring cartilage thickness over the entire 

articulating surface. The segmented cartilage also serves as a mask for identifying 

cartilage regions where quantitative image metrics (T1-rho, T2) should be extracted. 

Traditionally, this is done by having end users scroll through stacks of images and 
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manually identify cartilage tissue. The problem is that manual cartilage segmentation is 

an extremely time-consuming process. Furthermore, the precision of the cartilage volume 

developed based on this method has been questioned because the efficiency and 

repeatability of the segmentation are based on the level of human expertise (Yushkevich, 

Piven et al. 2006). As a result, clinical use of MRI for diagnosing early stage OA is not 

seen in practice.  

 The objective of this study was to develop a novel semi-automated, repeatable 

and time-effective algorithm to construct 3D geometries from high resolution 3D MR 

images. The proposed approach consists of two major image processing techniques: 

boundary-based methods that rely on the analysis of the energies of image pixels to 

delineate an outline of the region of interest (ROI) from a possibly noisy 2D image, and 

region-based methods that rely on the analysis of the homogeneity of a spatially localized 

region to divide the image region into several classes or clusters. The novelty of the 

proposed algorithm comes from the integration of boundary-based methods with a region-

based approach. The purpose of this study was to measure the accuracy of our cartilage 

segmentation algorithm by comparing the results to that obtained by laser scanning. 

Secondarily, we aimed to determine its repeatability by comparing the results from 

different MR sequences.   

 

 3.2. Methods 

 3.2.1 MR imaging 
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 Three porcine knees were used to evaluate the accuracy of an algorithm used to 

segment cartilage geometry. All three porcine knees were scanned using a 3.0T MR 

scanner, (Discovery MR750, GE Healthcare, Waukesha, WI) using an 8-channel phased-

array extremity coil (InVivo, Orlando, FL) and two separate imaging sequences. A three-

dimensional FSE Cube sequence was acquired for whole knee cartilage segmentation 

with TR/TE=1600/28ms, 14cm field of view, 384 x 384 matrix, interpolated (zero filled) to 

512 x 512 matrix, 80 slices with 1mm slice thickness. A three dimensional IDEAL-SPGR 

sequence was also applied with minimum possible TR of 8.6ms and three TEs of 4.2, 5.0 

and 5.8ms, 14cm field of view, 384 x 384 matrix, interpolated (zero filled) to 512 x 512 

matrix, 80 slices with 1mm slice thickness. After the second and third porcine knees were 

scanned for the first time, they were re-positioned and rescanned to allow for repeatability 

studies. By comparing the geometries obtained from the two scans, we can assess the 

repeatability of the segmentation algorithm. The repeatability of both the FSE Cube and 

the IDEAL SPGR were tested. Next, five healthy human subjects’ knees were scanned 

and the resulting MR images were segmented using the same approach. This study was 

approved by the Wisconsin Health Sciences Institutional Review Board. Five healthy male 

subjects (average height: 175.7cm, weight: 72.56 kg, age: 32.6 years old) participated 

after providing informed consent.  These were used to measure the time performance of 

semi-automated segmentation on human knee MRI scans. Each subject’s knee was 

scanned using both FSE Cube and IDEAL SPGR sequences. By measuring the 

segmentation time per MR slice, we can assess the performance of this algorithm and its 

feasibility for clinical use.  
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 3.2.2 Semi-automated segmentation algorithms 

MR images were segmented using custom Matlab (The MathWorks, Natrick, 

Massachusetts, U.S.) code and the following the semi-automated segmentation method 

to construct 3D models.  

 Step 1. Segment out the bone tissue (pre-processing) 

 Discriminating cartilage from bone was an important first step. A geodesic active 

contours method was used to identify the bone area in each sagittal image stack. 

Geodesic active contour is a boundary-based image segmentation technique (Caselles, 

Kimmel et al. 1997). The user first draws an initial rough outline named “initial contour” 

and the algorithm determines whether the neighboring pixels should be added to the initial 

contour. If the pixel energies of the neighboring pixels are similar to the seed contour, the 

contour grows from the initial selection. The process is then iterated until it meets the 

boundary between bone and cartilage. By using this method, we can select and clear out 

the region of bone in an MR image so that detection of the cartilage boundary can be 

improved (Figure 11). 

 

Figure 11. Geodesic Active Contours Method to identify the bone area in each 

sagittal image stack. 
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 If any noise remains around the cartilage boundary, a fuzzy C-mean Method 

(FCM) (Ahmed, Yamany et al. 2002; Nock and Nielsen 2006) can be applied to remove 

it, and will effectively sharpen the boundary (Figure 12).  

 

 

Figure 12. Fuzzy C-mean filter to remove the noise around cartilage boundary 

 

 FCM is one of the region-based image segmentation methods that relies on data 

clustering based on the analysis of the homogeneity of the image pixel values. Image 

data clustering is the process of dividing image pixels into several classes or clusters so 

that pixels in the same categorized class are as similar as possible, and pixels in different 

classes are as dissimilar as possible (Nock and Nielsen 2006). The FCM algorithm allows 

discriminating of the cartilage region and the remaining noise near the cartilage-bone 

interface, clearly. 

 The noise removal process was done semi-automatically throughout all slices in 

the MR images (Figure 13). The algorithm only requires user interaction three times. For 
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the example of femoral cartilage segmentation, the user needed to select one point at the 

center of the femoral bone region in the beginning of the 2D sagittal image slice where 

the femoral cartilage first appeared, another point in the mid-slice between the two 

femoral condyles, where the anterior cruciate ligament (ACL) was found, and then the 

other point in the end of the femoral cartilage slice where the last slice of the femoral 

cartilage was found (Figure 14). 

 

Figure 13. Sagittal image stack of knee MRI 
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Figure 14. User interaction to set initial contours through sagittal image stack of 

right porcine knee MRI  

Based on the first, second and third mouse click points at the centers of the bony regions 

in the femur, the algorithm set small initial contours, the sizes of which were slightly 

smaller than the bony regions in the 2D images. Then, the algorithm found the mid-slices 

of the medial and lateral condyle based on the slice index numbers of the beginning slice, 

the mid-slice between the two femoral condyles and the end slice. The center locations 

and the sizes of the initial contours in the mid-slices of the  medial and lateral condyle 

were estimated from the center locations and the sizes of the contours from the 

aforementioned three slices (Figure 14). Finally, the center locations and the sizes of the 

initial contours in the slices between the beginning slice and the mid-slice of the medial 

condyle were linearly calculated based on the information of the two slices and the initial 

contours were placed in each slice between the two, respectively. In a similar fashion, the 

contours in the slices between the mid-slice of the medial condyle and the mid-slice of 

the two femoral condyles, between the mid-slice of the two femoral condyles and the mid-



22 
 

slice of the lateral condyle and between the mid-slice of the lateral condyle and the end 

slice were calculated and placed, respectively.  

 Step 2. Edge detection  

 The Canny edge detection technique (Canny 1986) is a boundary-based image 

segmentation technique which aims at recognizing points, lines or regions in a digital 

image at which the pixel intensity changes suddenly, or more formally, has discontinuities. 

The regions at which image pixel intensity changes suddenly are usually organized into 

a set of curved line segments or edges. Edge detection is an essential algorithm in digital 

image processing, mostly in the area of feature recognition. We utilize this image 

processing method to detect cartilage regions from an MR image. This method can be 

used to capture changes in material properties because the region of collagen that 

constructs cartilage is brighter than any other tissue due to its higher proportion of water 

(Canny 1986; Lim 1990; Parker 1997) (Figure 15).  

 

 

Figure 15. Edge detection  
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 Step 3. Detection of cartilage boundary using radial line casting 

  The user is asked to select three points on each sagittal MR image of the knee 

(Figure 16): the start point of cartilage in the most anterior region (Figure 16, P1), the 

center point of bone (Figure 16, P2), and the end point of cartilage in the most posterior 

region (Figure 16, P3). Based on the three points, a large sector will be created. This 

large sector is equally divided into smaller parts with each division terminating in a new 

point (Figure 16, P4, P5 and P6). The number of divided sectors can be chosen by the 

user. Larger numbers of divisions will provide higher resolution but will slow down the 

detection process. We then track changes in pixel intensity along these lines and detect 

the non-zero pixel values. (The edge detector converts gray scale MR images to black 

and white images and the black pixel has 0 value while the white pixel has 1 value.) These 

will be selected as the locations of cartilage inner and outer boundaries (Figure 17).  If 

detection is not well done, user can manually correct incorrect detection of boundaries. 
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Figure 16. Selection of 3 points to choose the start point, pivot point and end 

point of image profiler 

 

Figure 17. Cartilage Detection 
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  Step 4. Reconstruct the cartilage volume 

 Finally, the algorithm draws a closed curve from the detected boundary points to 

make the outline of the cartilage (Figure 17). Detected cartilage boundaries on the stack 

of 2D images form a series of contours in 3D space and then the algorithm explores the 

pixel data in each 2D image to find pixels near a contour in each slice. Once these pixels 

are found, the x and y coordinates of points can be extracted based on the locations of 

these pixels in each 2D image and the z coordinates can be extracted based on the slice 

thickness and slice indices. After the coordinates of these 3D points are extracted, the 3D 

points are then connected into surfaces and called isosurfaces. The reconstructed 

isosurfaces can be patched into 3D triangular meshes, and then the meshes can be 

expressed as lists of triangular faces and sets of three vertices that form these triangles. 

The converted lists of triangular faces and sets of vertices can be saved to the standard 

STL format for further geometrical processing. STereoLithography (STL) is a data format 

native to stereolithography CAD (3D Systems, Valencia, California, U.S.). This file format 

is supported by many other 3D CAD software packages for visualization and geometrical 

processing as well. The resulting STL models were imported to Geomagic (Geomagic, 

Research Triangle Park, NC), smoothed and decimated to ~40,000 meshes per bone.  

We note that the general method presented in this work can be applied to femoral, tibial 

and patellar cartilage and is also applicable to other articular joint cartilage, as long as the 

cross section of the cartilage is arc-shaped. 
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 3.2.3 Validation of segmentation method 

 Laser Scanning 

  After MR scanning, the porcine specimens were laser scanned. By comparing the 

geometry obtained from the MR images with the geometry obtained from the laser scans, 

we were able to measure the accuracy of the segmentation algorithm. The semi-

automated MR segmentation method presented herein was validated by comparing 

segmented MR images of three porcine knees with post-dissection laser scans of 

cartilage regions (Koo, Giori et al. 2009). Articular cartilage surfaces of the femur, tibia, 

and patella were scanned using a portable 3D laser scanner (ShapeGrabber: Ottawa, 

Canada) (Figure 18). The axial resolution of the laser scanner was 0.1 mm. Since the 

laser scanner can only scan the surfaces that are exposed to the optical sensor, scans 

were repeated at different angles and registered using Geomagic (Research Triangle 

Park, NC). To scan the femur, the bone was first oriented such that the resulting scan 

was in the coronal plane. This position was marked as 0 degrees. Each subsequent scan 

was completed after the bone was rotated in an increment of 45 degrees, resulting in a 

total of eight scans. Patellar and tibial cartilages were scanned in four planes, including 

the posterior-superior, posterior-inferior, posterior-medial and posterior-lateral view. 

Three screws placed into the bone surface allowed for registration of these different 

scans. Cartilage tissues were exposed to room temperature air for less than 10 min during 

preparation and 12 min during laser scanning to prevent volume change due to 

dehydration (Koo, Giori et al. 2009). After the articular surfaces of the cartilage had been 

scanned, specimens were submerged in an 8.25% sodium hypochlorite solution for 18 
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hours to 24 hours to dissolve the cartilage (24 hours for femoral and tibial cartilage, 18 

hours for patella cartilage) (Koo, Giori et al. 2009). Thick cartilage tissue will take longer 

to be completely dissolved. Following cartilage removal, only bone remains. Laser scans 

were repeated on this remaining tissue. The model created from the specimen with 

cartilage and the model created from the cartilage-free specimen were registered using 

the best fit alignment function in Geomagic. The three screws fixed on the bone surface 

were used as landmarks to register. By performing Boolean operations on these two 

scans using Geomagic, the cartilage geometries were acquired (Figure 18). Because 

laser scanning is known as a very accurate method of obtaining 3D geometries, the 

geometries acquired by the laser scanner were used as the “gold standard” to calculate 

the accuracy of the 3D models generated from the MR images (Koo, Giori et al. 2009). 
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Figure 18. Applying Boolean operation between the geometry with and without 

cartilage which were scanned using laser scanner to create 3D cartilage model. 

Three screws were fixed on bone to register the location of two models. 

 

 Comparing geometries 

 3D geometries from the semi-automated MR image segmentation program and 

laser scanning device were registered to each other using the best fit alignment function 

in Geomagic (Chen and Medioni 1991). Differences in thickness between the two models 

were calculated as follows. First, thicknesses of each model were computed for all the 

points on the articular surface (outer surface) by searching the nearest 3D point on the 
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bone-cartilage interface surface (inner surface).  The thickness data was saved on 3D 

thickness maps. Then, the thickness was compared on the nearest points of the two 

models (Koo, Giori et al. 2009).  

 

 3.3. Results 

 Thickness maps were able to elucidate variability in cartilage thickness (Figure 19). 

 

Figure 19. The 3D thickness maps of femoral, patella and tibial cartilage model 

segmented from FSE Cube MR images.  

 The accuracy vs. thickness of both the FSE Cube sequence and the IDEAL SPGR 

sequence are shown in (Figure 20). The cartilage thickness based on the 3D model 

acquired from MR images tends to be overestimated for thin regions and overestimated 

for thick regions. MRI tends to overestimate when the thickness of the region of interest 

is less than 2.3mm and underestimate when it is over 2.3mm.  It is known that the 

thickness of thin regions is overestimated due to the partial volume effect and MR imaging 

voxel anisotropy. There was a significant linear relationship between the actual cartilage 

thickness and the accuracy, which was consistent with the literature (Koo, Giori et al. 
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2009). Overall, the mean accuracy of the FSE Cube was within +0.25mm and -0.10mm 

and that of the IDEAL SPGR was within +0.35mm and -0.40mm. This shows the model 

segmented from the FSE Cube has higher accuracy than the model from the IDEAL 

SPGR. 

 

Figure 20. Differences in thickness measurement between MRI based 3D models 

and laser-scan based 3D models. The means of the differences were drawn as 

lines, and standard deviation for every 0.1mm range was drawn as error bars. 

Three porcine knees were used to evaluate the accuracy 
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 The semi-automated segmentation technique was tested on human knee MR 

images to check the feasibility of use with images of human cartilage. Preprocessing 

times to remove noise in bony regions are not included. After approximately 30 minutes 

of noise removal pre-processing, the MR images were tested. First, the repeatability to 

construct the 3D model from the MR images was measured. Differences in 3D thickness 

between the two models constructed from the two repeated MR scans are shown in 

(Figure 21). Repeatability was within +0.2mm and -0.1mm for both3D-FSE and 3D-SPGR. 

 

 

Figure 21. Differences in thickness measurement between 3D models from first 

scan and second scan of human knee MRI. The means of the differences were 

drawn as lines, and standard deviation for every 0.1mm range was drawn as error 

bars. MR images from five healthy male subjects were used to evaluate the 

repeatability 
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Table 1. Time performance of semi-automated segmentation method for human knee MRI. 

MR images from five healthy male subjects were used to evaluate the performance. 

Sequence Cartilage 
Region 

Average 
Number  
of slices 

Average 
Detection 
Time/slice(s) 
 

Average 
Correction 
time/ 
slice(s) 

Average 
Segmentation 
Time/slice(s) 

Average 
Total  
Time (s) 

Average 
Total 
Time(min) 

FSE 
Cube 

Femur 72.8 4.01 3.22 7.23 526.34 8.77 

FSE 
Cube  

Tibia 55.6 3.92 1.39 5.31 295.23 4.92 

FSE 
Cube 

Patella 44.0 3.78 6.39 10.17 447.48 7.46 

 Total 172.4 11.71 11.00 22.71 1268.19 21.13 

IDEAL 
SPGR 

Femur 74.0 3.93 5.58 9.51 703.74 11.73 

IDEAL 
SPGR 

Tibia 65.4 4.07 1.75 5.82 380.63 6.34 

IDEAL 
SPGR 

Patella 44.2 3.68 7.80 11.48 507.42 8.46 

 Total 183.6 11.68 15.13 26.81 1591.79 26.52 
  

Second, the detection time for each MR slice was measured (Table 1). However, when 

there were errors in detection, these regions were manually corrected. The manual 

correction times were recorded. Processing time per image for segmentation including 

manual correction is shown in Table 1. The overall performance on human knee MR 

images was 22.71 s/slice for the FSE Cube sequence and 26.81 s/slice for the IDEAL 

SPGR sequence. The time performances for both MR sequences are fast enough to be 

practical for clinical use. 

Additionally, cartilage free porcine patella bone was submerged into an 8.25% sodium 

hypochlorite solution for an additional 72 hours to ensure that the solution did not digest 

porcine bone tissue. The geometry of the cartilage free patella was laser-scanned before 

it was submerged. After the extra 72 hours, the geometry was rescanned. The two 
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geometries were registered to each other using a surface matching function in Geomagic, 

and the thicknesses were compared (Figure 22). 

 

Figure 22. Comparison of porcine patella bone geometries after immersion in 8.25% sodium 

hypochlorite solution for 72 hours. 

 The average positive thickness difference between two surfaces was 0.053mm 

and the average negative error was -0.056mm. The positive and negative thickness 

differences came from the error during model registration. Overall, the average thickness 

difference including positive and negative was 0.0025mm and its standard deviation was 

0.073mm. This shows the solution does not digest bone tissue. 

 

 3.4. Discussion 

 Computer assisted segmentation techniques could enhance the use of MRI for 

evaluating cartilage health, while reducing user time and providing repeatable quantitative 
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assessments. In recent years, there have been a series of advances in MRI segmentation 

for the quantitative assessment of cartilage volume in longitudinal clinical 

studies(Eckstein, Cicuttini et al. 2006). Recent MRI segmentation methods can be divided 

into two categories by the degree of human user interaction with the computer: fully 

automatic segmentation methods which do not require any user interaction, and semi-

automated methods which require some degree of user interaction. Then each method 

can also be subdivided into two sub-categories: the boundary-based methods that rely 

on analysis of the energy level of the image pixels to delineate a region of interest’s 

boundary, and region-based methods that rely on the analysis of the homogeneity of a 

spatially localized region to select the area of the region of interest. 

 Several fully automatic segmentation methods have been developed. Tamez-pena 

et al. (Tamez-Pena, Farber et al. 2012) proposed a region-based method to fully-

automatically segment the knee cartilage using the Atlas database. The Atlas database 

is built from knee MR images of many healthy subjects, and segmentation is conducted 

based on comparison to the pre-accumulated database. Fripp et al. (Fripp, Crozier et al. 

2010) also developed a fully-automatic boundary-based cartilage segmentation method 

using the active shape model (ASM). Active shape models (ASMs) are statistical models 

of the shape of objects which iteratively deform to fit within the boundary of cartilage. The 

initial rough shapes are built from a training set of triangulated surface representations of 

each of the bones in the knee. Both Atlas and ASM based methods are fully-automatic 

methods that rely on a priori knowledge of healthy knee shapes from many subjects 

(Cootes, Taylor et al. 1995; Tamez-Pena, Farber et al. 2012). It is pointed out by the 

authors that diseased knees would be more difficult to segment due to their odd shapes 
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(Fripp, Crozier et al. 2010), and would require higher computation cost since they access 

pre-stored databases of healthy knee shapes and continuously compare current detected 

cartilage volume to pre-stored volumes (Cabezas, Oliver et al. 2011). 

 Various semi-automated segmentation methods have been developed that require 

different degrees of user interaction. Stammberger et al. (Stammberger, Eckstein et al. 

1999), Peterfy et al. (Peterfy, van Dijke et al. 1994), Piplani et al. (Piplani, Disler et al. 

1996) and Eckstein et al. (Eckstein, Gavazzeni et al. 1996; Eckstein, Schnier et al. 1998) 

utilized semi-automatic region-based methods such as “region growing” to segment 

cartilage regions. Lynch et al. (Lynch, Zaim et al. 2000), Stammberger et al. 

(Stammberger, Eckstein et al. 1999) and Kauffmann et al. (Kauffmann, Gravel et al. 2003) 

utilized boundary-based methods such as “active contour (also known as snakes)”. Active 

contours are computer-generated curves that move within images to find target 

boundaries. Steines et al. (Steines and P. 2000), Gougoutas et al. (Gougoutas, Wheaton 

et al. 2004) and Bowers et al. (Bowers, Trinh et al. 2008) utilized boundary-based 

methods such as “live wire”. Live wire is a segmentation technique which allows a user 

to select regions of interest using simple mouse clicks. The user sets the starting point 

clicking on an MR image’s pixel. Then, as the user starts to move the mouse over other 

pixels, the smallest cost path is drawn from the starting point to the pixel the mouse is 

over, changing itself if the user moves the mouse. This method is widely used in the field 

of image segmentation because the user can check the boundary detection in real time 

while working, but it requires the most user interaction. Aforementioned methods let the 

initial user-defined contour grow to fit in the boundary of the cartilage without prior 

knowledge of knee shape. However, Solloway et al. (Solloway, Hutchinson et al. 1997) 
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utilized semi-automated boundary-based methods using the “active shape model (ASM)”. 

The active shape model is an advanced version of the active contour method. It is also 

known as “smart active contour or smart snakes”. It uses some degree of pre-

accumulated database to increase the detection rate. Compared to the fully automated 

ASM method utilized by Fripp et al. (Fripp, Crozier et al. 2010), this method is a semi-

automated application of ASM which still needs some degree of user interaction: The 

initial rough shapes are built by the user. Ghosh et al. (Ghosh 2000) utilized boundary-

based methods such as “immersion based watershed”. The algorithms of their method 

can be simply described by figuring that holes are punctured in each local minimum of 

the topographic relief. Next, the surface is slowly immersed into ‘virtual water’, by that, 

filling all the water basins, starting from the basin that is associated to the global minimum. 

As soon as two water basins tend to merge, a dam is built. The procedure results in a 

partitioning of the image into many water basins, of which the borders define the 

watersheds. Kshisagar et al. (Kshirsagar, Watson et al. 1998) utilized a boundary-based 

method such as “edge detection” to segment the cartilage regions. Stehling et al. 

(Stehling, Baum et al. 2011) proposed a semi-automated boundary-based segmentation 

method that superimposes two different MR image sequences to detect cartilage 

boundaries. However, this method requires two different MR sequences of the same knee 

to segment the images, and thus would not be practical for clinical use.  

 Each existing segmentation method has pros and cons. The novelty of the 

algorithm we developed comes from the integration of boundary-based methods with a 

region-based approach. We took strengths of each approach and integrated them to 

increase the boundary detection. Generally, computer assisted full or semi-automated 
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algorithms should give similar or better accuracy and reproducibility than manual 

segmentation methods, but with faster time, less effort, and less need for an expert 

(Stammberger, Eckstein et al. 1999). However, in most of these computer assisted 

methods, it would be very difficult to detect the anterior beginning point and posterior 

ending point of the cartilage boundary in the sagittal MR images without enormous prior 

knowledge of knee shape. The semi-automated technique we have developed utilizes a 

combination of semi-automated methods, specifically to increase the detection rate of the 

anterior beginning point and posterior ending point of the cartilage boundary. To increase 

the bone-cartilage contrast, we first deleted the noise in the bony region, using the 

combination of “geodesic active contour” and the “fuzzy C means method”, then applied 

“edge detection” to clearly detect the boundary of the cartilage. Then we let the user click 

points to select the anterior beginning, the center of the bony region and the posterior 

ending points of the cartilage. These points are very hard to be identified by computer 

software, so that the human “eye” is the best solution to identify these points. The pre-

processing of noise removal takes about 30 min to remove noise in the bony region in 

80~90 slices of MR images and this is the part where most of time is spent. However, in 

the case of larger slice thicknesses, this time could be reduced. To expedite the pre-

processing speed, every two (or more) slices could be averaged to reduce the number of 

slices.  

 Ideally, validation of the segmentation method should be not only on phantoms but 

on the actual biological tissue of interest (Eckstein, Cicuttini et al. 2006). The porcine knee 

was used to validate the accuracy and reproducibility and MR images from human 

subjects were used to test the processing time. The laser scanning method was used as 
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a “gold standard” to measure the accuracy in this study. It is known as a very accurate 

method of measurement and is relatively easy and convenient to use. Koo et al. (Koo, 

Giori et al. 2009) assessed the accuracy of in vivo cartilage thickness measurements from 

MR image-based 3D cartilage models using a laser scanning method and found that the 

thickness of cartilage in MRI were overestimated in thinner regions while the thick regions 

in the weight bearing area were underestimated. The accuracy of thickness in the MR 

segmented 3D cartilage models systematically varied according to actual cartilage 

thickness. The accuracy we measured using porcine knees also varied systematically 

and show consistency with Koo et al. (Koo, Giori et al. 2009). This variation in accuracy 

was derived from the nature of technical limitations in current MR imaging and soft tissue 

behavior. For MRI, reproducibility depends on the process of image acquisition, image 

analysis, and measurement method (Eckstein, Cicuttini et al. 2006). The processes of 

image acquisition and analysis were controlled for repetitive MR scans while there was 

some degree of manual correction by the user on a section-by-section verification. The 

difference in reproducibility was mainly derived from user correction during segmentation. 
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Chapter 4: Computationally Efficient Collision Detection 
Algorithm to enable the Calculation of Complex Cartilage 
Contact Pressure Patterns within Biomechanical 
Simulations of Movement 

 

 

 4-1. Introduction 

 The location and magnitude of knee joint articular contact are important factors 

that can affect the long-term health of cartilage tissue  (Andriacchi and Dyrby 2005; 

Andriacchi, Briant et al. 2006; Chaudhari, Briant et al. 2008; Tashman, Kopf et al. 2008; Andriacchi 

2009). However, joint contact modeling represents a computationally challenging problem 

due to the complexity of articular surface geometries, nonlinear tissue properties and the 

intermittent nature of loading during gait (Arnold, Ward et al. 2010; Dhaher, Kwon et al. 

2010). These challenges tend to preclude the direct use of finite element analysis within 

a multi-joint dynamic simulation of movement. Discrete element analysis (DEA) 

represents a viable approach that computes contact pressure based on the degree of 

overlap between interacting cartilage surfaces. In a DEA approach, cartilage tissue is 

represented as an array of compressive springs overlying rigid body representations of 

the articulating bone surfaces (An, Himeno et al. 1990; Li 1994; Iwasaki, Genda et al. 

1998; Genda, Iwasaki et al. 2001; Volokh, Chao et al. 2007). DEA approaches have been 

used to study contact mechanics in various diarthrodial joints, most recently progressing 

to fully 3D subject-specific geometry (Anderson, Iyer et al. 2010). 

The most time-consuming step in DEA is the detection of overlap between high 

resolution articulating surface meshes. This task can be exceptionally burdensome within 

a dynamic simulation of movement, where collision detection and penetration depth 

calculations must be repeated at every integration time step in order to update contact 

pressure. A brute force approach to collision detection would evaluate penetration 

between every pair of faces of two surfaces, resulting in an order (N2) computation time. 
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Various algorithms have been proposed to speed up the process of computing cartilage 

surface contact within dynamic simulations. Dhaher et al. described articular surfaces as 

the inner product of two basis functions, providing for continuous contact 

calculations(Dhaher, Delp et al. 2000). Bei and Fregly used polygon meshes, but 

restricted collision detection to neighbors of previous contact patches, thereby leveraging 

the fact that relatively small changes in pose occur between simulation time steps (Bei 

and Fregly 2004). Collision detection of polygon surfaces is a well-studied problem in the 

graphics community (Bergen 2004). One promising approach involves the use of  

bounding volume hierarchichal structures (BVH) and ray-casting to rapidly narrow down 

the regions of surface that may be overlapping(Gottschalk 1996; Schmidl 2004). Further 

computational gains can be achieved by porting this routine onto parallel cores of the 

Graphics Processing Unit (GPU)(Lauterbach 1981), allowing for collision detections to be 

performed on multiple mesh faces simultaneously. 

The objective of this study was to assess the feasibility of using BVH/ray casting 

techniques to enable the simulation of cartilage pressure distributions within a multibody 

dynamic knee model. We first investigate the computational gains and convergence 

properties that are achievable when using a range of mesh densities to represent the 

cartilage surfaces. We then demonstrate the use of the DEA approach for simulating knee 

cartilage pressure within a whole body simulation of gait. 

 

 4.2. Methods 

 4.2.1. Cartilage Surface Geometries and Bounding Volumes 

 High-resolution magnetic resonance (MR) images of the right knees of a healthy 

young adult male (age= 22 yr, height= 177.80 cm, mass=79 kg) were acquired under a 

protocol approved by the Wisconsin Health Science Institutional Review Board. A VIPR 

ATR sequence(Al Saleh, Hernandez et al. 2013) was used to obtain isotropic volumetric 
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images with 0.3 mm cubic voxels. The images were manually segmented (MIMICS, 

Materialise Group, Leuven, Belgium) to obtain 3D geometries of the femoral cartilage, 

tibia plateau and patellar facet cartilage surfaces (Kaiser, Bradford et al. 2012) (Figure 

23). These surfaces were smoothed in Geomagic (3D Systems, Morrisville, North 

Carolina) and decimated to obtain surface geometries of varying resolution, ranging from  

260 (34.9 mm2/element)  to 1.3 million ( 0.007 mm2/element)  of total triangular elements 

on the tibial and femoral surfaces (Table 2).  

 

Figure 23. Segmentation of Knee Cartilage  

 Contact detection was facilitated by creating a BVH of the femoral cartilage 

geometry using tight-fitting, oriented bounding box trees (OBB Trees)(Gottschalk 1996; 
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Schmidl 2004). A bounding volume hierarchy (BVH) is a tree structure on a set of virtual 

bulks to wrap geometric objects and oriented bounding box is a type of virtual bulk used 

to wrap the geometric objects. The lowest level of the BVH tree structure consists of 

boxes, termed leaf nodes, that tightly fit over each element of the femoral cartilage 

surface. Leaf nodes are then recursively grouped as small sets and enclosed within larger 

OBBs until a single OBB tightly encapsulates the entire femoral cartilage 

geometry(Gottschalk 1996; Schmidl 2004).  

 

 4.2.2. Contact detection and calculation of penetration depth 

 Contact Detection: Contact detection is the process of detecting the degree of 

overlap, i.e. the depth of penetration, between two surface measures. One first sets the 

three-dimensional pose of the meshes based on the position and orientation of the bone 

segments to which they are attached. In our case, the femur and tibia segments were 

posed based on simulated gait pose. For each triangle of the tibia plateau, a series of ray-

OBB intersection tests were then conducted. A ray is cast normal to the triangle and an 

intersection test is performed to see if the ray intersects the largest OBB of the target 

femoral geometry (Williams, Barrus et al. 2005) (Figure 24).  
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Figure 24. Ray-OBB intersect test between target and contact body 

 

 If there is no intersection, the test is terminated. If a ray intersects this hierarch 

OBB, then this ray will be tested with OBBs in the next sub-hierarchy. The ray-OBB test 

is repeated recursively until it finds the leaf node (Choi 2013). The result is a pair of 

triangles in the tibial (contact) and femoral (target) bodies. The depth of penetration, d, is 

then determined by computing the distance from the contact surface face centroid to the 

ray-intersection point on the corresponding leaf node triangle (Equation 1): 
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  (Equation 1) 

A distance d>0 is indicative of penetration of the tibia triangle into the femoral surface. 

Assuming the cartilage tissue to be linearly elastic, contact pressure is then computed 

using an elastic foundation model that can accommodate the larger deformations that 

occur in natural knee cartilage (Equation 2). 
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   (Equation 2) 

where γ is  Poisson’s ratio, E the elastic modulus of cartilage, and h is the combined 

thickness of femoral and tibial cartilage (An, Himeno et al. 1990; Blankevoort, Kuiper et 

al. 1991b; Bei 2004; Lin 2004). 

 

 4.2.3. GPU Implementation of Contact Detection Algorithm  

 The contact detection was implemented on the GPU using Compute Unified 

Device Architecture (CUDA) to gain additional speed. In contrast to a serial 

implementation on the Central Processing Unit (CPU), the GPU implementation can 

leverage a larger number of Arithmetic Logical Units (ALUs) which can perform ray-BVH 

intersection tests in parallel (Figure 25). Further, the multi-cores in GPU are used as high 

throughput, many-core processors (Lauterbach 1981) to construct a parallel OBB tree, 

test hierarchical intersections and query penetration.   

 



45 
 

 

Figure 25. CPU computing architecture consists of a small number of fast 

processing cores (ALU). In contrast, The GPU has a larger number of cores that 

can perform a many operations in parallel. 

 

 4.2.4. Neuromusculoskeletal Model 

 To assess the performance of the tibiofemoral contact algorithm, we incorporated 

the contact surfaces into a previously developed 6 degree-of-freedom tibiofemoral joint 

model (Thelen, Choi et al. 2014). The knee model included nonlinear spring 

representations of 19 ligaments (Shelburne, Torry et al. 2006; Shin, Chaudhari et al. 

2007), and a one degree-of-freedom patellofemoral joint that allowed the patella to 

translate in a constrained path relative to femur. The knee model was implemented into 

a multi-body musculoskeletal dynamics model (SIMM, MusculoGraphics, Inc., Santa 

Rosa, CA) that included 44 Hill-type musculotendons acting about the hip, knee and 

ankle(Arnold, Ward et al. 2010) (Figure 26). A computed muscle control algorithm was 
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used to compute muscle excitations needed to drive the musculoskeletal model to track 

kinematics measured during normal overground walking (1.25 m/s) (Thelen, Choi et al. 

2014). At each time frame of the simulation, the current pose of the femur, tibia and patella 

were used to calculate the ligament forces and cartilage pressure of the knee model. 

These knee model outcomes were then applied within the dynamic simulation when 

computing body accelerations (Figure 26).  

 

Figure 26. Co-simulation framework in which muscle excitations are varied such 

that a multi-body dynamics model tracks measured gait kinematics. A 6 degree of 

freedom tibiofemoral model with 19 ligaments and articular contact is solved for 

the ligament and contact forces at each time step of a dynamic simulation.  
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 4.2.5. Performance Tests 

 We performed a series of tests to assess the influence of the mesh density and 

processor implementation (CPU: AMD Phenom II X6 1055 T Processor 2.8GHz with 8GB 

Main RAM, GPU: NVIDIA GeForce GTX 560Ti with 1GB Graphics RAM) on the contact 

computation time and contact pressure patterns. Computation times were evaluated at a 

single pose of the femoral and tibia corresponding to the second peak of the tibiofemoral 

force during stance. Reported GPU times include the transfer time between the main 

memory in the host and the global memory in the GPU. To test how the cartilage mesh 

density effects computation time and contact pressure calculations, we repeated the 

analyses for a range of mesh densities. For each mesh density, we computed the contact 

area, the center of contact pressure location, and average pressure at the second force 

peak of stance. The CPU-implementation was not tested due to time limitations. 
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Table 2. Numbers of triangles in 3D models used for the convergence test and  

their corresponding average triangle sizes 

Femoral Cartilage Tibial Cartilage Total Knee Cartilage 

# of 

triangles 

Average  

triangle  

area 

(mm2) 

# of 

triangles 

Average  

triangle  

area ( 

mm2) 

# of 

triangles 

Average  

triangle  

area 

(mm2) 

130 51.929 130 17.793 260 34.927 

260 26.139 260 8.889 520 17.514 

650 10.338 650 3.556 1,300 6.947 

6,500 1.029 6,500 0.354 13,000 0.691 

26,000 0.257 26,000 0.089 52,000 0.173 

65,000 0.103 65,000 0.035 130,000 0.069 

104,000 0.064 104,000 0.022 208,000 0.043 

416,000 0.016 416,000 0.005 832,000 0.011 

650,000 0.010 650,000 0.004 1300,000 0.007 

 

 4.3. Results 

 A dynamic simulation of one gait cycle takes 120 minutes to run. Tibiofemoral 

contact force patterns over a gait cycle (Figure 27) exhibited the characteristic double-

peak during stance, with greater net force borne on the medial tibia plateau than on the 

lateral tibia plateau. Predicted cartilage contact pressures exhibited greater magnitudes 

and excursion on the medial tibia plateau during gait cycle (Figure 28). Medial cartilage 



49 
 

contact pressure progressed anteriorly through much of stance, reaching a peak 

forward position prior to toe-off, which is consistent with empirically derived contact 

patterns (Liu, Kozanek et al. 2010). 

 

Figure 27. Simulated contact force on articular cartilage of the right tibia plateau 

cartilage over a gait cycle 
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Figure 28. Simulated contact pressure on articular cartilage of the right tibia plateau cartilage 

at heel strike, peak load 1 and peak load 2  

Solution time increased with increasing mesh density for both BVH implementations, 

though the rate of increase was greater for the CPU algorithm than the GPU (Figure 29). 

GPU implementation of BVH was 10x faster than the CPU implementation with 1,300,000 

elements in the knee model. The BVH algorithm on the CPU provided a 10,900x increase 

in speed over the brute force CPU method. Contact parameters were dependent on mesh 

density but converged to within 2% of the limiting value at 52,000 elements (Figure 30) 

(Table 2). 
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Figure 29. Speed test for the BVH algorithm implemented on the CPU and GPU 
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Figure 30. Mesh density influences the contact area, center of contact location 

and average contact pressure on articular cartilage of the tibia plateau at the 

second peak force of stance. 

 

 4-4. Discussion 

 The results of this study demonstrate the benefits of using bounding volume 

hierarchical (BVH) structures to compute the location of contact between articular 

surfaces. The contact detection algorithm treats each face of the contact body 

independently, which allows for easy parallel implementation on multiprocessors. This 

allowed us to implement the algorithm on a graphics processor unit (GPU), which was up 

to 10X faster than running the same algorithm on a CPU. The advantage of GPU-based 

calculation of contact detection increased substantially with mesh density, which reflects 
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some of the overhead costs associated with CPU-GPU data transfer that arises in GPU 

scientific computing.  

Speed-up of contact detection is important given that contact pressure calculations 

have to be performed every time step in a dynamic simulation, which can thus represent 

the most time consuming task in simulating gait. We note that within a dynamic gait 

simulation, that the tibiofemoral pose does not change considerably between two 

successive integration time steps. Hence in practice, additional computational gain is 

achieved by simply checking if the paired triangles from a prior step still remain in contact. 

This test is achieved using a single ray-triangle intersection test(Moller 1997), which when 

positive circumvents the need to re-progress through the BVH. 

 Our gait simulation predicted the characteristic bimodal loading of the tibiofemoral 

joint during the stance phase of walking. The magnitudes of the net tibiofemoral joint 

contact forces (2 BW and 2.8 BW for the first and second peak) are consistent with 

predictions made by simpler knee models and in vivo measures obtained with 

instrumented implants (Fregly, Besier et al. 2012). The medial contact pressures were 

higher than on the lateral side, and the medial center of pressure progressed anteriorly 

over stance. In vivo tibiofemoral contact pressures during gait are not available, thus 

direct validation is not feasible. However, the simulated pressure patterns agree favorably 

with image-based measures of tibiofemoral contact patterns during normal gait. Liu et al. 

measured cartilage deformations of 7 to 23% during the stance phase of gait, with larger 

anteriorposterior excursions and contact areas on the medial tibia plateau than on the 

lateral plateau. Our gait simulations show similar trends, with the medial plateau center 
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of pressure progressing anteriorly 7.9 mm between the first and second peaks of stance 

(Figure 28). Medial cartilage contact area estimates are very similar to Liu et al.’s 

measurements, while our lateral contact area tends to be ~50% lower(Liu, Kozanek et al. 

2010). Further study is needed to determine the underlying causes of such differences. 

 Our sensitivity analyses provide an objective basis for settling on the mesh 

densities needed to use DEA models to assess cartilage contact. We found mesh 

densities of >100,000 triangles for the two articulating surfaces (average triangle area 

<0.1 mm2) produced consistent estimates of peak tibia plateau pressure, contact area 

and center of pressure that varied less than 0.15%.  

There are limitations to consider in this work. First we did not include a meniscus 

in our knee model which is well recognized to distribute pressure in the tibiofemoral joint. 

Recent studies have introduced discretized meniscus models (Anderson, Iyer et al. 2010; 

Guess, Thiagarajan et al. 2010) that would be well suited to incorporate in future iterations 

of the multi-body knee models. Our pressure calculations assume linearly elastic cartilage 

tissue properties, which clearly ignores viscoelastic effects. Adding in viscoelasticity 

would increase complexity considerably by adding additional state variables to track, such 

that it may be preferable to use gait simulation outputs on a more conventional finite 

element model to consider more complex material properties. 

We conclude that a BVH implementation on the GPU is a viable approach for 

simulating articular contact in gait, can produce pressure estimates consistent with 

empirical observations. The computational speed achieved allows for simulations to be 

performed more readily, permitting the use of probabalistic approaches to look at how 
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injury and intervention-induced changes in knee structure may affect in vivo knee 

mechanics and function. 
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Chapter 5: The Accuracy of Simulated Tibiofemoral Contact 
Loads Obtained via the Co-Simulation of Neuromuscular 
Dynamics and Knee Mechanics 
(Thelen, Choi et al. 2014) 

 
 

 5-1. Introduction 

The magnitude and location of joint contact forces are important to consider when 

assessing the causes and treatment of knee pathologies (Andriacchi, Mundermann et al. 

2004). Since internal loads cannot normally be measured in vivo, computational models 

are needed to estimate the joint contact forces that can arise during functional tasks such 

as walking. The traditional modeling approach involves two steps. A multi-body 

neuromuscular dynamics model is used in the first step to estimate muscle and net joint 

forces associated with a task performance (Anderson and Pandy 2001; Taylor, Heller et 

al. 2004). These forces are subsequently applied as boundary conditions to a knee 

mechanics model to estimate ligament forces and the distribution of joint contact loads 

(Shelburne, Torry et al. 2005; Shelburne, Torry et al. 2006; Kim, Fernandez et al. 2009). 

However, this serial simulation approach may not capture two-way interactions that can 

exist between musculoskeletal dynamics and internal joint mechanics. In particular, 

musculoskeletal models used to simulate movement typically use a simplified knee model 

with pre-assumed constraints on secondary knee motions (Delp, Loan et al. 1990; Wilson, 

Feikes et al. 1998; Arnold, Ward et al. 2010). This approach assumes that contact forces 

do not induce moments about the primary joint axis, and that muscle forces are not 

important contributors to secondary motion constraints (Lin, Walter et al. 2010). However, 

the validity of such assumptions was questioned in a recent study that showed that 
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muscle force estimates are sensitive to the constraints included in the knee model (Lin, 

Walter et al. 2010). Hence, it would seem preferable to co-simulate neuromuscular 

dynamics and knee joint mechanics, such that muscle, contact and ligament loads are 

considered within the context of whole body movement dynamics. 

The co-simulation of movement and localized tissue mechanics represents a 

computationally demanding problem that has only recently been explored in the 

biomechanics literature (Halloran, Erdemir et al. 2009; Halloran, Ackermann et al. 2010). 

A major challenge involves the computation of appropriate muscle controls that drive a 

model to emulate coordinated movement. Prior studies have pre-assumed the muscle 

excitation patterns (Piazza and Delp 2001) or used dynamic optimization to compute 

muscle excitations that achieve a desired performance criterion (Halloran, Ackermann et 

al. 2010). While dynamic optimization is an attractive approach, obtaining a global 

optimum can be very challenging and require many iterations to converge (Neptune 

1999).  

We previously introduced a computed muscle control (CMC) algorithm which uses 

feedforward and feedback control to modulate muscle excitations to track measured joint 

angle trajectories (Thelen, Anderson et al. 2003; Thelen and Anderson 2006). CMC was 

originally formulated to work on models in which all joints have constrained translational 

degrees of freedom (e.g. a gimbal joint). Translational constraints allow for instantaneous 

force transmission across the joint, and hence a quantitative assessment of a muscle’s 

capacity to induce movement throughout the body. However in a dynamic multi-body 

model with 6 degree-of-freedom (d.o.f.) joints, time is required to deform the soft tissues 

and thereby transmit forces across a joint. Hence, the first objective of this study was to 
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extend the CMC algorithm to co-simulate musculoskeletal dynamics and joint mechanics 

when using models that include 6 d.o.f. joints spanned by soft tissues. Second, we sought 

to assess the veracity of the co-simulation framework by comparing model predictions of 

knee contact forces to in vivo measures obtained with an instrumented total knee joint 

replacement during walking (Fregly, Besier et al. 2012). Finally, we demonstrate the 

capacity of the framework to assess the sensitivity of contact loading patterns to variations 

in frontal plane knee alignment, which is an important consideration in joint replacement 

procedures. 

 

 5-2. Methods 

 5-2-1. Experimental Data 

The experimental data used in this study were collected as part of the 4th grand 

challenge competition for predicting in vivo knee loads (Fregly, Besier et al. 2012). We 

simulated the gait of a male subject (age 88 yrs, mass = 68 kg, height = 1.66 m) who 

received an instrumented total knee replacement on the right side for primary 

osteoarthritis. The data downloaded from the competition website 

(https://simtk.org/home/kneeloads) included the knee replacement geometry, post-

operative CT scans, electromyographic data, whole body kinematics, ground reactions 

and tibiofemoral contact forces during overgound walking. Medial and lateral tibiofemoral 

contact forces were delineated using four uniaxial force transducers embedded in the 

tibial tray (D'Lima, Townsend et al. 2005).  
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 5-2-2. Knee Mechanics Model 

We created a 3 body model of knee mechanics that included a one d.o.f. 

patellofemoral joint and a six d.o.f. tibiofemoral  joint (Shelburne, Torry et al. 2006; Shin, 

Chaudhari et al. 2007). Superior patella translation was the independent degree of 

freedom for the patellofemoral joint. The patellofemoral angles and anterior and lateral 

patella translation were defined as constrained functions of superior translation, such that 

the patella could translate and rotate within a constrained path relative to the femur(Delp 

1990). Seventeen knee ligament bundles were included in the model (Figure 31): the 

patellar ligament (medial, mid and lateral bundles), the medial collateral ligament (MCL, 

5 bundles), lateral collateral ligament (LCL), popliteofibular ligament (PFL), posterior 

cruciate ligament (anterior and posterior bundles), posterior capsule (4 bundles) and the 

illiotibial band (ITB). The anterior cruciate ligament (ACL) was not included since it was 

resected in the subject whose gait was simulated (Fregly, Besier et al. 2012). Ligament 

geometry data was not available for the test subject, so ligament origins and insertions 

were based on nominal descriptions in the literature (Sugita and Amis 2001; LaPrade, Ly 

et al. 2003; Davies, Unwin et al. 2004; Edwards, Bull et al. 2007; Petersen and Zantop 

2007; Liu, Yue et al. 2010). Wrapping objects were affixed to the femur to represent the 

collateral ligaments wrapping about the condyles. The nonlinear relationship between 

ligament force, F , and strain, , was represented by: 
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Figure 31. The three body knee mechanics model included 17 ligament 

bundles acting about the tibiofemoral and patellofemoral joints. Contact pressure 

between the femoral component and tibial insert was computed via an elastic 

foundation model. Ligament abbreviations are given in Table 3. 
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    (Equation 3) 

where  (=0.03) is the transition strain and k is the ligament stiffness expressed in units 

of force per unit strain. At any time point, the ligament bundle strain,  0 0/L L L   , was 

computed from the current length ( L ) and slack length ( 0L ) of the ligament. The slack 

length of each bundle was computed by scaling the ligament length in a reference 

configuration with its assumed reference strain ref : 

0 /(1 )ref refL L      (Equation 4) 
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Ligament stiffness and reference strains were adapted from representative values used 

in comparable knee models in the literature (Shelburne, Torry et al. 2006; Shin, Chaudhari 

et al. 2007) (Table 3). 
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Table 3: Ligament stiffness and reference strains used in the knee mechanics model. A negative 

reference strain assumes that the ligament is slack in the reference posture. 

Ligament Stiffness (N) Reference Strain 

aPCL 3000 -0.10 

pPCL 1500 -0.05 

asMCL 1500 0.02 

psMCL 1500 0.02 

adMCL 1000 0.02 

pdMCL 1000 0.02 

pMC 2000 0.02 

LCL 4000 0.02 

PFL 2000 -0.05 

aCAP 1500 0.02 

lCAP 2000 0.02 

oCAP 1500 0.02 

mCAP 2000 0.02 

mPL 4000 0.00 

cPL 4000 0.00 

lPL 4000 0.00 

ITB 5000 0.00 

Stiffness is expressed in units of force per unit strain. Reference strains are used to 

compute the ligament lengths in the upright reference configuration. Notation: aPCL, 

pPCL – anterior and posterior cruciate ligament; asMCL, psMCL – anterior and 

posterior superior medial collateral ligament; adMCL, pdMCL – anterior and posterior 

deep medial collateral ligament; pMC – posteromedial capsule; LCL – lateral collateral 

ligament; PFL – popliteofibular ligament; aCAP, lCAP, oCAP, mCAP – arcuate, lateral, 

medial and oblique posterior capsules; mPL, cPL, lPL – medial, central and lateral 

patellar ligament; ITB – ilitotibial band 
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The geometry of the implanted femoral component and tibial insert were 

represented by triangulated polygon meshes of the subject’s joint replacement. 

Tibiofemoral contact loads were computed using an elastic foundation model in which 

pressure was assumed to be a function of the depth of penetration of intersecting bodies 

(Bei and Fregly 2004). Intersecting regions between the femoral and tibia surface 

geometry were detected using ray casting in conjunction with hierarchical bounding 

volumes (BV). To do this, the femoral surface was first subdivided into a tree of 

geometrically coherent subsections, and tight-fitting oriented bounding boxes (OBB) were 

fit over each subdivision (Bergen 2004). A normal ray was then cast for each triangle of 

the tibia and a ray-OBB intersection test was performed with the largest OBB. If 

intersected, ray-OBB tests continued to sub-hierarchical levels, ultimately identifying the 

leaf node (single triangle) of the femoral surface intersected by the ray (Gottschalk 1996; 

S. Gottschalk 1996; Bergen 2004; Schmidl 2004). The penetration depth, d, was defined 

as the distance from the center of a tibia triangle to the point at which a normal ray 

intersected the corresponding femoral leaf node. The contact pressure p on the tibia 

surface triangle was then calculated using a linearized version of an elastic foundation 

model (Bei and Fregly 2004):  

 
   

1

1 1 2

E d
p

h



 


 

 
    (Equation 5) 

were h is the insert thickness,  is Poisson’s ratio (=0.46) and E is Young’s modulus (=463 

MPa) for a ultra-high molecular weight polyethylene tibial insert (Kurt, Jewett et al. 2002). 

The force acting on the tibia surface triangle was obtained by multiplying the pressure by 
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the triangle cross-sectional area and applying the force normal to the triangle. Equal and 

opposite forces were applied at the same point in the femoral surface.  

 

 5-2-3. Lower Extremity Musculoskeletal Model 

We started with a generic lower extremity musculoskeletal model (Arnold, Ward et 

al. 2010) that included the pelvis, right femur, tibia, patella and foot segments. The hip 

was represented by a 3 d.o.f. ball-and-socket joint, and the ankle as a 1 d.o.f. joint that 

allowed for dorsi- and plantarflexion. We replaced the 1 d.o.f. knee in the generic model 

with the 3-body knee model described earlier. The femoral component surface geometry 

was positioned such that it closely aligned with the condyles of the generic model’s femur. 

The tibia insert surface geometry was then positioned in the tibia reference frame so that 

it closely aligned with the femoral component when the model was in an upright standing 

posture. The lower extremity model was scaled to represent the subject. Each body 

segment was scaled such that anatomical landmarks were optimally aligned with 

anatomical marker positions recorded with the subject standing upright. During scaling, 

the frontal plane knee angle was fixed at 4 deg valgus, as was measured from the post-

operative CT scans of the subject. 

The model included 44 Hill-type musculotendon units acting across the hip, knee 

and ankle joints (Arnold, Ward et al. 2010).  The input to each muscle was an excitation 

that could vary between 0 and 1. Excitation-to-activation dynamics were represented by 

a bi-linear differential equation with activation and deactivation time constants of 15 and 

40 ms, respectively. Contraction dynamics was represented by a nonlinear differential 
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equation describing the interaction of tendon compliance and the force-length-velocity 

properties of muscle (Thelen 2003). The lower extremity model was implemented in SIMM 

(Delp and Loan 1995), with the Dynamics Pipeline (Musculographics Inc., Santa Rosa, 

CA) and SD/Fast (Parametric Technology Corp., Needham, MA) used to generate code 

describing the multibody equations of motion. 

 

 5-2-4. Computed Muscle Control Algorithm 

With the muscles and knee model included, the multi-body dynamic equations of 

motion are of the form: 

m m c c eMq = R F +R F +R F +F +G(q)+C(q,q)        (Equation 6) 

where M is the mass matrix, G(q) is a vector of forces arising from gravity, C(q, q)  are 

forces arising from coriolis and centripetal accelerations, and 
eF  represents generalized 

forces arising from external loads or prescribed accelerations. The force vectors arising 

from muscle (
mF ), ligament ( F 

) and articular contact (
cF ) are scaled by moment arm 

matrices 
mR , R


and 

cR , respectively. The generalized coordinates, q, include the six 

d.o.f. pelvis motion (translation and orientation) relative to ground, three hip rotation 

angles, three tibiofemoral angles, three tibifemoral translations, superior patella 

translation and ankle dorsiflexion. Pelvis, hip and tibiofemoral angles are expressed as a 

Cardan rotation sequence consisting of flexion, adduction and then rotation about the 

long axis of the distal segment (Grood and Suntay 1983). 
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A computed muscle control (CMC) algorithm was used to determine the muscle 

excitations needed to drive the model to closely track measured hip flexion, hip adduction, 

knee flexion and ankle dorsiflexion trajectories (Figure 32). CMC is a feedforward-

feedback controller that uses the experimentally measured accelerations (
expq ) together 

with current errors in generalized speeds (
expq - q  ) and coordinates (

expq - q ) to 

compute a set of desired generalized accelerations in the degrees of freedom being 

tracked: 

   des exp exp exp
v pk kq = q + q - q + q - q           (Equation 7) 

where vk  and pk  are velocity and position feedback gains, respectively.  
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Figure 32. A computed muscle control (CMC) algorithm was used to modulate the 

lower limb muscle excitations such that the simulation closely tracked the measured hip, 

knee and ankle angles. At every time step, the tibia, patella and femur positions were used to 

ascertain the tibiofemoral contact and ligament forces. These forces were then applied within 

the forward dynamic simulation of the neuromusculoskeletal model. 

The original formulation of CMC was implemented for multi-body models in which 

all joints had constrained translational d.o.f., allowing for instantaneous load transfer 

across the joint to occur. Such a formulation allows for a muscle’s potential to induce 

motion, defined as the generalized accelerations generated per unit muscle force (Arnold, 

Anderson et al. 2005), to be directly computed from the whole body equations of motion. 

Computationally, muscle potential is determined by applying a unit muscle force, ˆ 1iF  , 

and then solving the equations of motion (equation 6) for the resulting accelerations (

1 m
i i

q M R ). However in the case of a 6 d.o.f. tibiofemoral joint, it is not feasible for a muscle 

proximal to the knee to instantaneously generate segment accelerations distal to the 
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knee. Time is needed for ligament and contact surface deformations to occur, such that 

force is transmitted across the joint. To handle this challenge, we adapted CMC to 

compute a muscle’s potential to induce joint accelerations assuming the knee 

translational accelerations are instantaneously zero. This assumption was used since 

contact and ligament forces restrict the knee translations to relatively small magnitudes. 

A zero translational acceleration constraint therefore allowed for instantaneous force 

transmission across the knee, and thus provided an estimate of the effect of ligament and 

contact forces on joint rotational accelerations. To implement the constraint, we first 

defined a vector, 
xq , as the subset of generalized coordinates associated with the 

tibiofemoral ( txq , tyq , tzq ) and patellofemoral ( pyq ) translational degrees of freedom.  

T

x tx ty tz pyq q q q  q =       (Equation 8) 

We used a finite difference technique to estimate a sensitivity matrix,  xS , describing the 

dependency of generalized accelerations to variations in the knee translational degrees 

of freedom. 

x

tx ty tz pyq q q q

    
 
     

q q q q
S =

         (Equation 9) 

These sensitivities were then used to determine virtual perturbations, xq , to the  

translation knee coordinates that, in conjunction with a unit muscle force, would negate 

translational knee accelerations. This assumption was applied for each muscle i by 

solving the following linear equations:  

1
,

ˆ m
i i x x iq = M R + S q         (Equation 10) 
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ˆ
x q 0       (Equation 11) 

for ,x iq  and ˆ
iq  . The vector ˆ

iq  is an estimate of the potential of muscle i to induce 

accelerations throughout the limb per unit muscle force.  

The muscle potential acceleration information was used to update muscle controls 

every T=0.01 seconds within a simulation. When updating controls, we first determined 

muscle force increments, 
mF , that when added to the current muscle forces would 

induce desired accelerations in the tracked degrees of freedom: 

1

ˆ
m

des m cur
i i

i

F


q = q q         (Equation 12) 

In eq. (10), 
curq  represent the generalized accelerations resulting from current muscle 

forces, ligament forces, contact forces, external force and gravity acting on the system. 

Muscle redundancy was resolved by simultaneously minimizing a cost function J which, 

in this study, was taken as the sum of muscle-volume (V) weighted squared activations 

(a) (Happee 1994): 

2

1

m

i i
i

J Va

=       (Equation 13) 

where muscle activations are determined based on the force-length-activation properties 

of muscle (Thelen and Anderson 2006). Excitations were then determined from 

activations by inverting activation dynamics. After computing the controls, the skeletal 

equations of motion, muscle activation dynamics and contraction dynamics were 

integrated forward using a forward-backwards implicit numerical integration routine 
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(Hindmarsh, Brown et al. 2005). The control process was then repeated every T=0.01 

sec throughout a gait simulation. 

 

 5-2-5. Simulations of Knee Mechanics during Gait 

We generated simulations of five overground walking trials with an average gait 

speed of 1.25 (0.02) m/s. For each gait trial, a global optimization inverse kinematics 

routine was first used to determine the pelvis translations, pelvis rotation, hip angles, knee 

flexion and ankle dorsiflexion that best agreed with the measured pelvis and lower 

extremity marker trajectories. At this stage, the knee abduction angle was maintained at 

4 deg while the tibiofemoral internal rotation and translations were assumed to be 

constrained functions of knee flexion as defined in the generic lower extremity model of 

Arnold et al. (Arnold, Ward et al. 2010).  

We then used the CMC algorithm to compute muscle excitations that drove the 

dynamic multi-body model to track measured hip flexion, hip adduction, knee flexion and 

ankle dorsiflexion trajectories over a gait cycle. Measured ground reactions were applied 

directly on the feet (Thelen and Anderson 2006), while pelvis generalized coordinates 

were prescribed to track measured values. The tibiofemoral translations, patellofemoral 

translation, tibiofemoral internal rotation and tibiofemoral adduction were unconstrained 

in the dynamic simulations, and thus evolved naturally as a function of the external and 

internal loads acting on the system. We compared the timing of muscle excitations to 

temporal patterns of electromyographic data that were recorded from the subject during 

the walking trials simulated. Model predictions of tibiofemoral contact forces acting in the 

medial and lateral compartments were quantitatively compared to in vivo measures using 
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Pearson’s correlation, the coefficient of determination, the average difference in the force 

predictions (bias), the standard deviation of the force prediction errors (precision) and the 

root-mean-squared (r.m.s.) error. We also evaluated the agreement between the medial, 

lateral and total contact forces at the time of the two peak contact forces that arise in the 

stance phase of normal gait. 

 

 5-2-6. Sensitivity of Model Predictions to Frontal Plane Alignment 

We performed a sensitivity study analyzing the dependence of tibiofemoral loading 

patterns to variations in frontal plane alignment between the femoral component and tibia 

insert. To do this, we first re-ran the inverse kinematics routine with fixed knee valgus 

angles 2 deg greater and less than that measured (4 deg valgus) on the CT scans. For 

each case, we re-oriented the femoral component and tibia insert by counter-rotating 

each surface by 1 deg in the coronal plane, such that they were aligned and just 

contacting with the model in the upright standing configuration. We then used CMC to re-

generate dynamic simulations using the re-aligned models to track the gait kinematics. 

Note that tibiofemoral adduction and rotation were not fixed in these forward dynamic 

simulations, but evolved as a result of tibiofemoral contact and internal soft tissue 

loadings. The effect of alignment on loading was quantitatively evaluated by comparing 

the tibiofemoral contact force and pressure patterns at heel strike, and the time of the first 

and second peak of the tibiofemoral contact force. 
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 5-3. Results 

The modified CMC algorithm modulated muscle excitation patterns to successfully 

track measured hip flexion, hip adduction, knee flexion and ankle angle trajectories with 

average root-mean-square errors of 0.4, 0.3, 0.9 and 1.0 deg, respectively. Simulated 

posterior cruciate and collateral ligament forces were relatively small (generally <100 N), 

with peak magnitudes arising during swing phase (Figure 33).  
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Figure 33. Comparison of average electromyographic (EMG) data with 

simulated muscle excitations, activations and forces over a gait cycle.  

Reasonably good temporal agreement is seen for the vastus lateralis, medial 

gastrocnemius, soleus and tibialis anterior. Normal bursts of hamstring activity 

(semitendinosus, biceps femoris long) in late swing and early stance are also 

predicted, though the subject exhibited greater medial hamstring EMG activity 

throughout the gait cycle. Rectus femoris EMG activity near toe-off is slightly 

lower than that used in the model to initiate swing limb motion between 50 and 

60% of the gait cycle. Simulated posterior cruciate and collateral ligament forces 

were greatest in mid-swing. 
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Model predictions of tibiofemoral contact forces exhibited the characteristic double 

peak in stance, with greater load borne on the medial side (Figure 33). The temporal 

patterns of medial and total tibiofemroal contact forces agreed well with measurements, 

with average Pearson R2 of 0.87 and 068, respectively. Temporal patterns of lateral forces 

were not as well predicted (R2=0.07), with the model over-estimating lateral contact forces 

in early stance and mid-swing. The magnitude of medial contact forces estimates agreed 

well with measurements, with an average root-mean-squared (RMS) error of 0.26 body 

weight (BW), and a slight bias (+0.09 BW) to over-predicting the loads (Table 4). Errors 

in lateral force estimates were slightly larger, with average RMS errors of 0.42 BW (Figure 

34). The first peak in the estimated medial load averaged 1.95 BW, which was 13% 

greater than experimental measures. The second medial peak estimate was 1.6 BW 

which was 4% above average measurements. The first and second total peak forces of 

2.76 and 2.71 BW were 17% and 5% greater than the corresponding peak force 

measurements. 
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Figure 34. Model-predicted medial, lateral and total tibofemoral contact 

forces (expressed in units of body weight, BW) over 5 experimental walking 

cycles. Experimentally measured contact forces represent the mean (±1 s.d.) over 

the same 5 repeat walking cycles. Peak lateral contact forces are of comparable 

magnitude to experimental forces in late stance, but the model predicts greater 

lateral contact forces in early stance (0-10%) and first half of swing (60-80%) than 

was measured. 
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Table 4: Agreement (mean 1 s.d.) between measured and model-predicted tibiofemoral joint 

contact forces over 5 trials of normal walk. 

  Medial Lateral Total    

R2, Pearson's  0.87 (0.03) 0.07 (0.08) 0.68 (0.08) 
R2, Coef of Determ 0.81 (0.05) -1.29 (0.92) 0.60 (0.09) 
        
Bias (BW)  0.09 (0.02) 0.06 (0.08) 0.15 (0.09) 
Precision (BW)  0.24 (0.03) 0.42 (0.08) 0.48 (0.08) 
RMS Error 
(BW)  0.26 (0.03) 0.42 (0.08) 0.51 (0.07) 

        
Peak 1 (BW) Predicted 1.95 (0.08) 0.81 (0.31) 2.76 (0.32) 
 Measured 1.73 (0.09) 0.65 (0.06) 2.37 (0.12) 
 Error 0.22 (0.10) 0.17 (0.34) 0.39 (0.34) 
        
Peak 2 (BW) Predicted 1.60 (0.17) 1.11 (0.13) 2.71 (0.17) 
 Measured 1.56 (0.14) 1.05 (0.06) 2.60 (0.10 
 Error 0.04 (0.23) 0.06 (0.14) 0.11 (0.20) 

R2 was calculated using Pearson’s correlation coefficient and the Coefficient of Determination 
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The frontal plane alignment of the joint replacement had a substantial influence on 

the secondary tibiofemoral kinematics and joint loading patterns. A two deg shift toward 

greater valgus alignment increased external rotation in swing and internal rotation in early 

stance (Figure 35). A more varus alignment had the opposite effect on tibia rotation. The 

change in frontal plane knee alignment affected the predicted load distribution across the 

medial and lateral compartments. At the time of the first peak in tibiofemoral loading, the 

percentage of load borne on the medial component was 87%, 78% and 66% of the total 

load for 2, 4 and 6 deg valgus alignments. More equal distribution of load was observed 

at time of second peak with 66%, 59% and 52% of the total load on the medial aspect of 

the tibial insert. These effects carried over to the contact pressure estimates, with lower 

peak pressures on the medial side and greater peak pressures on the lateral side with 

more valgus alignment (Figure 36). Coronal alignment affected the location of pressure 

at heel strike, but did not substantially alter the location of peak pressure regions when 

the limb was loaded in mid-stance. 
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Figure 35. Frontal plane alignment of the joint replacement substantially altered tibia 

rotation in swing and early stance, but had little effect on rotation when the limb was loaded 

in mid- and terminal stance. A more valgus joint replacement alignment induced greater knee 

abduction, lower medial contact forces and higher lateral contact forces throughout stance. 
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Figure 36. Predicted contact pressures on the tibial insert at the time of heel 

strike and the first and second peaks of the tibiofemoral contact loading. Greater 

valgus alignment of the joint replacement resulted in a more posteriorly loaded 

lateral compartment at heel strike. During stance, the location of peak pressures 

did not vary with alignment, but more even pressure distribution across the 

medial and lateral compartments is predicted in the valgus alignment. 

 

 5-4. Discussion 

We have introduced a framework for simulating the interaction of muscle, ligament 

and joint contact forces within the context of dynamic multi-joint movement. We first 

showed that the framework can be used to predict knee contact force patterns that 

compare well with those measured directly using an instrumented knee implant (D'Lima, 

Townsend et al. 2005). We then demonstrated that the co-simulation framework can be 

used to predict the sensitivity of knee contact loading patterns to variations in implant 
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alignment. Such an approach allows one to virtually assess the coupled influence of 

physiological, surgical and design factors on in vivo musculoskeletal loads. 

Biomechanical models have long been used to estimate the tibiofemoral loading 

patterns during gait. Early inverse modeling approaches tended to over-predict the 

tibiofemoral joint reaction forces, with estimates nearly 7 times body weight (Seireg and 

Arvikar 1975). More recent studies using dynamic gait analysis and knee mechanics 

models have produced substantially lower knee contact force estimates (2-3 times body 

weight) that are closer to experimentally measured values (as reviewed in (Fregly, Besier 

et al. 2012)). However, a primary limitation of prior studies is that a simplified knee model 

is often used when estimating muscle forces that arise in gait (Kim, Fernandez et al. 

2009). A common approach uses a constrained 1 d.o.f. knee joint in which muscles only 

actuate flexion-extension. It has recently been shown that releasing these constraints can 

alter both muscle and joint contact force estimates (Lin, Walter et al. 2010). However, this 

prior study only considered knee mechanics in isolation, which does not account for the 

action of multi-joint muscles.  

This study represents the first attempt to use the computed muscle control 

algorithm (Thelen and Anderson 2006) on a model with six d.o.f. joints. Most 

musculoskeletal models utilize joints in which inter-segmental translations are fixed or are 

constrained functions of joint angles (Yamaguchi and Zajac 1989; Wilson and O'Connor 

1997; Arnold, Ward et al. 2010). Such joints allow for instantaneous transfer of forces, 

which means one can use multibody equations of motion to assess directly the potential 

of a muscle to generate whole body accelerations (Arnold, Anderson et al. 2005). Such 

is not the case in a 6 d.o.f. joint restrained by soft tissues and articular contact, in which 
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time is required to deform elastic tissues and transmit forces. In this study, we numerically 

assessed the translational stiffness arising from ligament stretch and cartilage elasticity 

at a point in time (equation 3-4). Using this information, we were able to approximate the 

translational d.o.f.’s as fixed when estimating the capacity of a muscle to induce whole 

body accelerations. This information could then be used within the controller to track joint 

angular motions about primary degrees of freedom, as originally formulated in the CMC 

algorithm (Thelen, Anderson et al. 2003; Thelen and Anderson 2006). A major advantage 

of using 6 d.o.f. joints is that secondary kinematics (e.g. tibiofemoral translations and non-

sagittal rotations) evolve naturally from the muscle, ligament, contact and external forces 

acting on the system, and thus are fully consistent with whole body dynamics. Such a 

framework would be well suited to investigate how muscles can be used to stabilize joints 

that may be compromised by injury-induced changes in ligamentous properties 

(Shelburne, Torry et al. 2005; Shao, MacLeod et al. 2011).  

The co-simulation framework was solvable in reasonable time periods, with 

approximately 100 minutes of computation time on a desktop computer needed to 

generate a single cycle of gait. The greatest computational burden was in detecting 

contact between the femoral component and tibial insert surface geometries. We were 

able to accelerate contact detection by using hierarchical oriented bounding boxes to 

quickly identify closest triangles of adjacent polygonal surfaces (Gottschalk 1996; Kurt, 

Jewett et al. 2002; Schmidl 2004; Hindmarsh, Brown et al. 2005). It is possible that further 

computational gains are achievable by using surrogate modeling approaches to infer 

contact pressures directly from tibiofemoral orientation and positions (Lin, Farr et al. 2006; 

Halloran, Ackermann et al. 2010).  Contact pressures were computed using an elastic 
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foundation model in which it was assumed that pressure is a simple function of the depth 

of penetration. The ability of the elastic foundation model to ascertain contact stress 

patterns in joint replacements has previously been demonstrated (Halloran, Easley et al. 

2005). 

We demonstrated the predictive capacity of the computational framework by 

varying the alignment of the knee joint replacement, and assessing how secondary 

motions and contact change in response. The importance of frontal alignment on the 

performance of knee joint replacements is well recognized (Jeffery, Morris et al. 1991). 

For example, a recent large scale study showed that excessive valgus and varus 

alignments are associated with substantially higher rates of failure (Fang, Ritter et al. 

2009). Our sensitivity analysis suggests that internal tibia rotation is highly dependent on 

joint alignment when the limb is unloaded in swing and early stance. However, internal 

tibia rotation was relatively independent of loading during stance, with the greatest effect 

of alignment being on the mediolateral distribution of load across the tibiofemoral joint. A 

more equal distribution and lower pressure on the medial insert in the knee occurred with 

greater valgus alignment (Figure 36). These results are similar to experimental 

observations made when simulating gait on cadaveric specimens with varus and valgus 

alignments of the tibial insert (Werner, Ayers et al. 2005). We did predict a peak contact 

pressure on the posterior edge of the lateral insert at heel strike (Figure 36), though this 

effect may have arisen in part from the over-predict of lateral compartment loading in early 

stance (Figure 34).  

There are a number of limitations to consider in our knee model. We represented 

the ligaments as spring elements, rather than deformable 3D representations that account 
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for spatial variations in strain. A one d.o.f. patellofemoral joint allowed for patella glide to 

occur as a result of patellar tendon stretch, but did not allow for medio-lateral translation 

and tilt. These choices were made for computational reasons since the simplified ligament 

and patellofemoral model could be more efficiently solved within the context of whole 

body movement. Increased knee model complexity can be easily incorporated into the 

framework, and is certainly warranted as improvements are made in the computational 

speed at which more complex soft tissue and contact models can be solved. We directly 

applied measured ground reaction forces within the gait simulation. Future studies will 

investigate the potential to use the elastic foundation framework to simulate foot-floor 

interactions within the context of whole body gait simulations. Finally, our framework relies 

on a static objective function to resolve muscle redundancy at every time step within the 

gait simulation. We used a popular objective function (sum of squared activations) that 

has been shown to reasonably predict muscle coordination in normal gait (Crowninshield 

and Brand 1981; Anderson and Pandy 2001). Our formulation over-predicted lateral 

compartment loading in early stance, which in part results from excess hamstring activity 

being recruited upon heel strike (Figure 33). Future studies may be able to better replicate 

experimental muscle recruitment patterns by incorporating objective functions that 

maximize agreement with EMG activities.  

It is worth noting that generic musculoskeletal and ligament geometry were scaled 

to the subject and then used to simulate subject-specific gait dynamics. This scaling 

approach is often used in biomechanical simulation software (Delp, Anderson et al. 2007) 

and avoids the time consuming task of creating subject-specific musculoskeletal models 

from medical images. It is reassuring that this approach generated plausible estimates of 
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tibiofemoral contact forces, supporting the use of model scaling until more efficient 

approaches emerge for creating truly subject-specific musculoskeletal models. Posterior 

cruciate and collateral ligament forces were relatively low throughout the gait cycle, 

though stretch of these structures during swing did contribute to the over-prediction of the 

lateral and total tibiofemoral forces (Figure 36). Ligament stretch with knee flexion is 

highly dependent on the assumed ligament geometry, such that further work is needed 

to accurately characterize ligament origins, insertions, and wrapping about anatomical 

structures. 

This study demonstrates the potential for co-simulating ligament, muscle and joint 

contact mechanics within the context of coordinated multi-joint movement. When applied 

to gait, model predictions of medial and total knee contact forces closely emulated 

experimental measures and exhibited a dependency on tibiofemoral alignment. We 

conclude that the new framework provides a powerful approach for virtually investigating 

how coupled physiological, surgical and design factors could affect joint mechanics and 

performance during functional tasks. 
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Chapter 6: The Influence of Cartilage Thickness on 
Simulated Tibiofemoral Contact Pressure Patterns during 
Normal Human Walking 

 

  

 6-1. Introduction 

 Recent studies have shown that a high knee adduction moment during gait was 

frequently observed among patients who have osteoarthritis in medial 

compartments(Hurwitz, Ryals et al. 2002).  Further, medical image studies on healthy 

subjects showed that cartilage thickness increases with high knee loads (Andriacchi and 

Mundermann 2006). Seedhom et al. suggested that cartilage has homeostasis and this 

makes articular cartilage conditioned when high stresses or repetitive fatigue loads are 

applied (Seedhom 2006). In the literature, the possibility is reported that early cartilage 

thinning in anterior cruciate ligament (ACL)-deficient subjects can alter knee kinematics 

after ACL injury (Koo 2007). An investigation using three-dimensional knee cartilage 

models segmented from magnetic resonance images (MRI) of healthy subjects was 

performed and the result showed that the thickest cartilage region in the model was 

matched to the region of the load bearing areas between the femoral condyles and the 

tibia plateau, where they are in contact during the stance phase of the gait cycle near full 

extension (Andriacchi 2009).  

 Thus, the cartilage morphology, especially the cartilage thickness in the articular 

region, should be an essential concern in the study of the maintenance of healthy cartilage 

in the knee. This study has the goal of using a compuational model to begin to investigate 
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the relationship between cartilage thickness in the knee and tibiofemoral loading patterns 

during a walking gait cycle. 

 

 6-2. Methods 

Modeling Framework 

We used the knee model and co-simulation framework described in Chapter 5. 

However to simulate natural knee mechanics, we incoporated tibiofemoral cartilage 

surfaces segmented from a healthy adult female. High-resolution magnetic resonance 

(MR) images of the right knees of a healthy young adult male (age= 22 yr, height= 177.8 

cm, mass=79 kg) were acquired under a protocol approved by the Wisconsin Health 

Science Institutional Review Board. A VIPR ATR sequence(Al Saleh, Hernandez et al. 

2013) was used to obtain isotropic volumetric images with 0.3 mm cubic voxels. The 

images were manually segmented (MIMICS, Materialise Group, Leuven, Belgium) to 

obtain 3D geometries of the femoral cartilage, tibia plateau and patellar facet cartilage 

surfaces(Kaiser, Bradford et al. 2012) 

  

Sensitivity of Model Predictions to Different Articular Cartilage Thicknesses 

We repeated simulations of overground walking trials with an average gait speed 

of 1.25 m/s. We performed a sensitivity study analyzing the dependence of tibiofemoral 

loading patterns to variations in articular cartilage thickness between the femoral condyle 

and tibia plateau. Cartilage tissue was modeled as a linearly elastic isotropic material with 

an elastic modulus of 5 MPa, Poisson’s ratio of 0.45, no damping, and a uniform thickness 

of 3 mm for each cartilage surface (Total thickness h is sum of tibia and femoral cartilage 
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thicknesses, assumed 6 mm in nominal case) (Blankevoort and Huiskes 1991a; 

Blankevoort, Kuiper et al. 1991b; Kim 1996; Pandy, Sasaki et al. 1997; Caruntu and Hefzy 

2004; Shelburne, Pandy et al. 2004; Li, Park et al. 2005). The pressures were computed 

using nonlinear Kalker contact function (Equation 2) (An, Himeno et al. 1990; Blankevoort, 

Kuiper et al. 1991b) to find the contact pressures between the articulating cartilage. 

 (Equation 2) 

Then, we made four more cartilage models to represent very thin, thin, thick and very 

thick cartilage models. In total, 2mm (very thin cartilage), 4mm (thin cartilage), 6mm 

(normal), 8mm (thick) and 10mm (very thick) cartilage models were built. The cartilage 

surface was the same in each case.  We re-generated the dynamic gait simulations five 

times with five different cartilage models. The effect of cartilage thickness on loading was 

quantitatively evaluated by comparing the tibiofemoral contact force, pressure patterns 

and contact area at heel strike, and the time of the first and second peak of the 

tibiofemoral contact force. The top 5% peak pressure values were used to show the 

relationship between peak pressure in the simulation and thickness in the model instead 

of a peak pressure in the meshes. This is necessary to avoid error values from broken 

meshes during surface reconstruction. To calculate the top 5% peak pressures, the 

pressure values in the meshes in the contact area were collected first, and then the 

pressure values were sorted by the magnitudes of the pressures in the meshes. The 

meshes that contained the top 5% of high pressure were separated and averaged to 

calculate the top 5% peak pressures.  
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 6-3. Results 

 Five dynamic simulations of one gait cycle took 600 minutes (120 minutes / 

simulation) to run. Five cases of contact forces including medial (Figure 37), lateral 

(Figure 38) and net (Figure 39) tibiofemoral forces during gait cycles were plotted.  

 

Figure 37. Simulated medial contact forces on articular cartilage of the right tibia 

plateau cartilage over five gait cycles. 2mm, 4mm, 6mm, 8mm and 10mm of total 

thickness (h) of cartilage models were simulated. 

 

Figure 38. Simulated lateral contact forces on articular cartilage of the right tibia 

plateau cartilage over five gait cycles. 2mm, 4mm, 6mm, 8mm and 10mm of total 

thickness (h) of cartilage models were simulated. 
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Figure 39. Simulated net contact forces on articular cartilage of the right tibia 

plateau cartilage over five gait cycles. 2mm, 4mm, 6mm, 8mm and 10mm of total 

thickness (h) of cartilage models were simulated. 

 

The peak net tibiofemoral forces from the five gait simulations were plotted over total 

thicknesses ( 2mm, 4mm, 6mm, 8mm and 10mm) (Figure 40). (Figure 37), (Figure 38), 

(Figure 39) and (Figure 40) show that the tibiofemoral forces tend to increase as the 

cartilage gets thinner. 
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Figure 40. Plot of the peak net tibiofemoral forces from five gait simulations. 

2mm, 4mm, 6mm, 8mm and 10mm of total thickness (h) of cartilage models were 

simulated.  

 

Then pressure patterns at heel strikes, and the time of the first and second peaks of the 

tibiofemoral contact force using the five models were plotted (Figure 41). This shows that 

the tibiofemoral stress tends to increase and the contact area tends to decrease as the 

cartilage gets thinner. 
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Figure 41. Simulated pressure on articular cartilage of the right tibia plateau 

cartilage over five gait cycles. 2mm, 4mm, 6mm, 8mm and 10mm of total 

thickness (h) of cartilage models were simulated. 
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The total tibiofemoral contact areas (Figure 42) and top 5% peak pressures (Figure 43) 

in the contact area at the moment of the peak net tibiofemoral forces from the five gait 

simulations were plotted over total thicknesses. (Figure 42) and (Figure 43) clearly 

showed the nonlinear relationship between the cartilage thickness and contact and the 

inverse nonlinear relationship between the thickness and pressure. 

 

Figure 42. Plot of the total tibiofemoral contact areas at the peak loads from five 

gait simulations. 2mm, 4mm, 6mm, 8mm and 10mm of total thickness (h) of 

cartilage models were simulated.  
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Figure 43. Plot of the peak pressures at the peak loads from five gait simulations. 

2mm, 4mm, 6mm, 8mm and 10mm of total thickness (h) of cartilage models were 

simulated.  

 The lengths of aACL (Figure 44), asMCL (Figure 45) and LCL (Figure 46) in right 

knee during five cases of gait cycles were plotted to track the changes in the ligament 

lengths. 
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Figure 44. Simulated aACL lengths in the right knee over five gait cycles. 2mm, 

4mm, 6mm, 8mm and 10mm of total thickness (h) of cartilage models were 

simulated. 
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Figure 45. Simulated asMCL lengths in the right knee over five gait cycles. 2mm, 

4mm, 6mm, 8mm and 10mm of total thickness (h) of cartilage models were 

simulated. 
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Figure 46. Simulated LCL lengths in the right knee over five gait cycles. 2mm, 

4mm, 6mm, 8mm and 10mm of total thickness (h) of cartilage models were 

simulated. 
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Figure 47. Simulated aACL forces in the right knee over five gait cycles. 2mm, 

4mm, 6mm, 8mm and 10mm of total thickness (h) of cartilage models were 

simulated. 
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Figure 48. Simulated asMCL forces in the right knee over five gait cycles. 2mm, 

4mm, 6mm, 8mm and 10mm of total thickness (h) of cartilage models were 

simulated. 
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Figure 49. Simulated LCL forces in the right knee over five gait cycles. 2mm, 

4mm, 6mm, 8mm and 10mm of total thickness (h) of cartilage models were 

simulated. 

 

(Figure 47), (Figure 48)and (Figure 49) show that the ligament forces tend to increase 

due to the increasing of ligament lengths (Figure 44) (Figure 45) (Figure 46) as the 

cartilage gets thinner. 

 

 6-4. Discussion 

 The ratio between penetration depth d and total thickness h contributes to the 

pressure variation as a critical factor (Figure 50).  
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Figure 50. Plot of the pressure and the ratio between penetration depth and total thickness 

 

 Theoretically, when the total cartilage thickness gets thicker, the ratio relative to 

depth gets lower, while the ratio has a high value in thin cartilage (Figure 50)(Figure 51). 

This pattern was observed from the thickness sensitivity analysis models. (Figure 43) 

clearly showed the inverse nonlinear relationship between the cartilage thickness and 

pressure. The top 5% peak pressure at the max net load was increased as the cartilage 

got thinner. As a result, the contact area decreased and the ligament length increased 

due to this higher stress as the thickness got thinner (Figure 42). As a result, (Figure 37), 

(Figure 38) and (Figure 39) show that the tibiofemoral forces tend to increase due to the 

increasing of ligament forces (Figure 47), (Figure 48) and (Figure 49) as the cartilage gets 

thinner. 
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Figure 51. Schematic figure of thin and thick cartilage model  
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Chapter 7: Conclusions and Future Directions 
 

  

 7-1. Contributions of this research 

 7-1-1. Semi-automated segmentation of cartilage morphology from  

subject-specific MR images 

 Anatomically accurate cartilage modes are needed to characterize changes in 

morphology and to estimate the joint contact pressure distributions that can arise during 

functional tasks such as walking. We introduced a novel semi-automated segmentation 

approach to rapidly create cartilage thickness maps from MR images. The approach was 

shown capable of measuring thickness to within 0.4 mm, with accuracy improving for 

thicker cartilage. Before the development of this tool, manual segmentation had been 

used to construct 3D knee models from MR images. It had been taking a long time (more 

than 6 hours per model) to build a model from the MR images and the accuracy and 

repeatability had been questioned. The semi-automated process that we have developed 

will significantly decrease segmentation time while retaining precision and it is feasible to 

use for human knee cartilage segmentation. The overall time to make a 3D knee model 

from human knee MR images is less than an hour including pre-processing. This 

improved time performance is fast enough to be practical for clinical use. 

 

 7-1-2. Fast gait simulation using BVH and GPGPU 

 Simulation using anatomically detailed models can be resource-intensive with 

high-resolution cartilage meshes, due to the need to compute overlap of articulating 
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cartilage surfaces at every time step within a dynamic simulation. Using BVH and GPU, I 

showed the simulation time needed for collision detection can be expedited up to 10 times. 

This speedup further enables the viable simulation of cartilage contact loads within the 

context of musculoskeletal simulations of movement. 

  

 7-1-3. Thickness sensitivity analysis 

 The cartilage morphology, especially the cartilage thickness in the articular region, 

has been an essential concern in the study of the maintenance of healthy cartilage in the 

knee. This modeling study has provided insights into the relationship between the 

cartilage thickness in the knee and knee loading patterns during the gait cycle. Our results 

show that cartilage thinning may lead to higher force and pressure in articular knee 

surfaces and affect cartilage health.  

 

 7-2. Clinical Implications  

 7-2-1. MR image segmentation 

The semi-automated segmentation method is applicable for morphological assessment 

of articular knee cartilage with quantitative MRI (qMRI). By constructing three-dimensional 

thickness models of cartilage, we can analyze cartilage health, and monitor progression 

and treatment response in knee osteoarthritis (OA), all with reasonable processing time, 

accuracy, and reproducibility. Thus, it has tremendous potential for large scale 

epidemiological studies of knee OA. 

 

 



104 
 

 

 7-2-2. Gait simulation using high resolution cartilage geometries 

 Gait simulation can be used in the virtual design of joint replacements, and for 

investigating hypothesized relationships between soft tissue injury, cartilage loading 

patterns and osteoarthritis (Tashman, Collon et al. 2004). Also, this tool can be used as 

a pre-operative surgery simulator.  

 

 7-3. Future Work 

 7-3-1. Variable thickness knee cartilage model 

 In our gait simulations, we assumed that the cartilage thickness is uniform over the 

surface. But, quantitative MR study showed that the regions with cartilage-to-cartilage 

contact were significantly thicker than the regions without cartilage-to-cartilage contact 

(Andriacchi 2009). To have realistic outcomes, the gait simulation model should be 

advanced to contain regional variations in cartilage thickness. 

 

 7-3-2. Meniscus model 

The meniscus was omitted in the knee model used in this study. The reason for this is 

that the meniscus is a highly flexible body, such that a straight forward discrete element 

analysis used for tibiofemoral cartilage is not appropriate. Future studies should consider 

the use of discretized multi-body models of the meniscus (Anderson 2009; Anderson, Iyer 

et al. 2010). Alternatively, one could use a finite element method (FEM) to represent 

meniscus deformation(Guess, Thiagarajan et al. 2010), though this would then involve 
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the ‘Combined Finite-Discrete Element Method’(Munjiza 2004) which would be even more 

resource intensive.  

 

 7-3-2. Monte Carlo simulation using cluster computing 

 Knee surgery such as ACL reconstruction may alter soft tissue material properties 

or structure, which may influence the cartilage loading patterns in the knee joint. To 

understand the major factors contributing to knee OA, simulations with various conditions 

of knee kinematics and variations in the soft tissue properties or structure (Ateshian, 

Soslowsky et al. 1991; Cohen, McCarthy et al. 1999; Cicuttini, Wluka et al. 2002) of the 

joint are necessary. Executing many Monte-Carlo gait simulations(Dubi 1999; Laz and 

Browne 2010) using various conditions of knee kinematics and variations in the soft tissue 

properties or structure over a multi-core CPU&GPU computer cluster system using 

parallel processing methods will have tremendous ability to analysis the interrelationship 

between surgical factors and clinical outcomes. 

 

 7-3-2. MR segmentation 

1. Speed up the noise removal process 

Speeding up the bone segmentation process would be very useful.  At this time, the bone 

segmentation does not require much manual labor, but the processing time takes about 

30 min. 

2. Development of a tool for longitudinal studies 

 Implementation of an image registration tool could be considered. We will need to 

register images at two different time points assuming there is no shape change in bone 
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shape for now and generate pixel by pixel difference maps of cartilage thickness. 

However, this will be complex since bone shape changes rapidly as well following ACL 

reconstruction and with OA. 

3. Develop a tool for measuring changes in bone marrow edema volume and 

meniscus shape and area.   

These are very important factors following ACL reconstruction and in the progression of 

OA. 

   

 7-4. Conclusions 

 Impairment of the lower extremities can lead to substantial limitations for humans. 

Musculoskeletal knee models that anatomically-accurately represent the knee joint 

systems of individual patients could be used as a convenient investigation tool to simulate 

diverse treatment options and related clinical outcomes. However, the most difficult 

technical limitation  to utilizing this kind of simulation is validation of the simulation result 

(Fregly, Besier et al. 2012), because in vivo contact and muscle forces are very hard to 

measure.  

 The emergence of the instrumented knee implant became an unparalleled method 

to measure in vivo contact forces. Instrumented knee implants with telemetric data 

transmission made the measurement of the tibiofemoral contact forces and moments 

from live human subjects viable. By comparing the result from the gait simulation of the 

knee replaced subject with the in vivo measured values from the Grand Challenge 

Competition (Fregly, Besier et al. 2012), which is open to the public, we could partially 

validate the system we developed. After comparing the result from simulated knee 
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replacement and in vivo measurements from the instrumented knee implant, the knee 

model was replaced with a natural knee. A 3D model segmented from high resolution MR 

images was used to construct the anatomically detailed knee geometry. However, the 

computation using high-resolution cartilage meshes of femoral cartilage and tibia plateau 

cartilage from the MR images were resource-intensive and hard to solve within a 

reasonable time.  

 Using a computation strategy such as bounding volume hierarchy (BVH) and 

general purpose graphic processing unit (GPGPU) parallel computing made the 

computation of the contact detection during the gait cycle 10 times faster. This speedup 

may make it viable to solve for cartilage contact loads within the context of 

musculoskeletal simulations of movement. Such an advance could be used in the 

virtual design of joint replacements, and for investigating hypothesized relationships 

between soft tissue injury, cartilage loading patterns and osteoarthritis (Tashman, Collon 

et al. 2004). 

We used this tool for sensitivity analysis of the implant angle for knee replacement 

patients and also did sensitivity analysis for knees with various cartilage thicknesses. 

These virtual experimental studies have provided insights into the relationship between 

the configuration in the knee and knee loading patterns during the gait cycle and the 

maintenance of a healthy knee joint. 

 However, building a subject-specific knee model remains a challenging problem. 

Especially, the simulation designer spent too much time constructing the subject-specific 

knee models from the MR images due to the manual MR image segmentation process. 

After we developed the semi-automated knee cartilage segmentation method, the 
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modeling speed got dramatically faster. The repeatability of the segmentation algorithms 

on the same MR images was stable and the time performance on the human knee MR 

images was reasonably fast. Thus, it will be a practical solution for clinical use. The semi-

automated segmentation method is applicable for morphological assessment of articular 

knee cartilage with quantitative MRI (qMRI). By constructing three-dimensional thickness 

models of cartilage, we can analyze cartilage health, and monitor progression and 

treatment response in knee osteoarthritis (OA), all with reasonable processing time, 

accuracy, and reproducibility. Thus, it has tremendous potential for large scale 

epidemiological studies of knee OA. 

 With all the computational frameworks that have been developed for this study, it 

is viable to investigate the interrelationship between knee cartilage morphology and knee 

kinematics. The technology developed here to explore the nature of human knee perfectly 

is still limited. But, these tools can provide a useful and convenient method for those who 

investigate diverse treatment options for knee problems and related clinical outcomes. 
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